G. S. Voronov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. S. Voronov.
Plasma Physics Reports | 2008
G. S. Voronov; N. P. Kyrie; V. S. Markov; G. V. Ostrovskaya; A. G. Frank
The spatial distributions of the electron temperature and density, the effective and average ion charges, and the thermal and directed ion velocities in current sheets formed in two-dimensional magnetic fields and three-dimensional magnetic configurations with an X line were studied using spectroscopic and interference holographic methods. The main attention was paid to studying the time evolution of the intensities of spectral lines of the working-gas (argon) and impurity ions under different conditions. Using these data, the electron temperature was calculated with the help of an original mathematical code based on a collisional-radiative plasma model incorporating the processes of ionization and excitation, as well as MHD plasma flows generated in the stage of the current-sheet formation. It is shown that the electron temperature depends on the longitudinal magnetic field, whereas the ion temperature is independent of it. The effective ion charge of the current-sheet plasma was determined for the first time.
Plasma Physics and Controlled Fusion | 2010
N. N. Skvortsova; D. K. Akulina; G. M. Batanov; N. K. Kharchev; L. V. Kolik; L. M. Kovrizhnykh; A. A. Letunov; V. P. Logvinenko; D. V. Malakhov; A. E. Petrov; A. A. Pshenichnikov; Karen A. Sarksyan; G. S. Voronov
This paper reports on studies of short-wave turbulence in the plasma of the L-2M stellarator under markedly different conditions: with doubling the ECR heating power (100 and 200 kW) and with restricting the plasma radius by a sector limiter. The role of such short-wave turbulence in anomalous transport can appear important for conditions of a thermonuclear reactor. Experiments were carried out in a basic magnetic configuration of the L-2M stellarator during ECRH at the second harmonic of the electron gyrofrequency (75.3 GHz) at average electron densities of (1.5–1.7) × 1013 cm−3. The energy confinement time was ~3.5 ms at P0 = 100 kW and was reduced to ~2 ms at P0 = 200 kW. When the limiter was introduced inside the plasma to a depth of 2 cm from the last closed flux surface, τE decreased by a factor of 1.3–1.4. Plasma density fluctuations were measured from the scattering of gyrotron radiation at the second harmonic of operating frequency (~150 GHz). A quasioptical receiving system allowed measurements of scattered radiation from plasma regions r/a ≤ 0.6 at scattering angles π/4 ≤ Θ ≤ π/2 (24 cm−1 ≤ k⊥ ≤ 44 cm−1). The short-wave turbulence was studied for two radial positions of the scattering region: r/a = 0.3–0.4 and r/a = 0.5–0.6. Short-wave turbulence exhibits features of strong plasma turbulence. It is experimentally established that a change in the energy confinement time in the L-2M stellarator correlates with the level of short-wave turbulence.
Plasma Physics and Controlled Fusion | 2006
G. S. Voronov; E V Voronova; D. K. Akulina; G A Gladkov; L M Team
Boronization of the vacuum chamber of the L-2M stellarator has resulted in modification of the electron temperature profile. In particular, a well-defined jump in the electron temperature to Te ~ 100 eV in a narrow region Δr/r ~ 0.05 is observed in the temperature profile at the plasma edge. In the present paper, the value and shape of the jump in Te are studied at different values of plasma parameters and ECR heating power. A jump in Te is absent at a power of P ~ 100 kW, whereas at P ~ 200 kW the electron temperature drops from 150 eV to zero within Δr ~ 0.5 cm. The value of threshold power for the formation of a jump in Te at ne ~ 1.7 × 1019 m−3 lies within the range P ~ 100–160 kW. In terms of power per particle this power threshold is P/V/Ne ~ 0.2–0.3 Mw/m3/1019m−3, the value of which coincides with threshold power for ETB formation found recently in the CHS stellarator. When the helical-field strength is 25% or 50% below its standard value, a jump in Te at the plasma edge in L-2M is absent.
Plasma Physics Reports | 2005
A. I. Meshcheryakov; D. K. Akulina; G. M. Batanov; M. S. Berezhetskii; G. S. Voronov; G. A. Gladkov; S. E. Grebenshchikov; V. A. Grinchuk; I. A. Grishina; L. V. Kolik; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; A. E. Petrov; A. A. Pshenichnikov; G. A. Ryabenko; K. A. Sarksyan; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Khol’nov; V. M. Sharapov
After boronization of the vacuum chamber of the L-2M stellarator, radiative losses from ohmically and ECR heated plasmas were reduced by a factor of 3–4. Under these conditions, radiative losses in the ECRH regime comprise only 10–15% of the input microwave power. Some effects have been detected that were not observed previously: a substantial increase in the gradient of the electron temperature near the separatrix, a preferentially outward-directed radial turbulent particle flux (both throughout the discharge phase and from shot to shot), and a longer (by a factor of 2–3) duration of the plasma cooling phase.
Plasma Physics Reports | 2013
G. S. Voronov; M. S. Berezhetskii; Yu. F. Bondar; I. Yu. Vafin; D. G. Vasil’kov; E. V. Voronova; S. E. Grebenshchikov; I. A. Grishina; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; A. I. Meshcheryakov; E. I. Pleshkov; Yu. V. Khol’nov; O. I. Fedyanin; V. A. Tsygankov; S. V. Shchepetov; V. A. Kurnaev; I. V. Vizgalov; V. A. Urusov; I. A. Sorokin; F. S. Podolyako; A. Antipenkov; R. Pearce; L. Worth
Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305–310 nm can be detected even at water leakage rates less than 10−4 Pa m3/s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to ∼2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.
Plasma Physics Reports | 2008
D. K. Akulina; G. M. Batanov; M. S. Berezhetskiĭ; D. G. Vasil’kov; I. Yu. Vafin; G. S. Voronov; E. V. Voronova; G. A. Gladkov; S. E. Grebenshchikov; I. A. Grishina; A. V. Knyazev; L. M. Kovrizhnykh; L. V. Kolik; A. B. Kuznetsov; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; N. I. Malykh; A. I. Meshcheryakov; Yu. I. Nechaev; A. E. Petrov; A. A. Pshenichnikov; V. V. Saenko; K. A. Sarksyan; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Khol’nov; S. V. Shchepetov
Results are presented from experimental studies of variations in the plasma parameters during the excitation of a multiaxis magnetic configuration by the induction current (up to 17 kA) in the basic magnetic configuration of the L-2M stellarator in the regime of ECR heating at a microwave power of ∼200 kW (∼1 MW m−3) and an average plasma density of (1–2) × 1019 m−3. The current direction was chosen to reduce the net rotational transform (the so-called “negative“ current). The current was high enough for the rotational transform to change its sign inside the plasma column. Computer simulations of the L-2M magnetic structure showed that the surface with a zero rotational transform is topologically unstable and gives rise to magnetic islands, i.e., to a multiaxis magnetic configuration. Magnetic measurements showed that, at negative currents above 10 kA, intense bursts of MHD oscillations with a clearly defined toroidal mode number n = 0 were observed in the frequency range of several kilohertz. Unfortunately, the experimental data are insufficient to draw the final conclusion on the transverse structure of these oscillations. The radial temperature profiles along the stellarator major radius in the equatorial plane were studied. It is found that the electron temperature decreases by a factor of 1.3 in the plasma core (r/a ≤ 0.6) and that the temperature jump is retained near the boundary. A change in turbulent fluctuations of the plasma density during the excitation of a negative current was studied using wave scattering diagnostics. It is found that the probability density function of the increments of fluctuations in the plasma core differs from a Gaussian distribution. The measured distribution is heavy-tailed and broadens in the presence of the current. It is found that the spectrum of turbulent fluctuations and their Doppler shift near the plasma boundary are nonuniform in the radial direction. This may be attributed to the shear of the poloidal velocity. The experimental results indicate that the formation of regions with a zero rotational transform in the plasma core somewhat intensifies plasma transport.
Plasma Physics Reports | 2007
O. I. Fedyanin; D. K. Akulina; G. M. Batanov; M. S. Berezhetskiĭ; D. G. Vasil’kov; I. Yu. Vafin; G. S. Voronov; E. V. Voronova; G. A. Gladkov; S. E. Grebenshchikov; L. M. Kovrizhnykh; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; N. I. Malykh; A. I. Meshcheryakov; Yu. I. Nechaev; K. A. Sarksyan; N. N. Skvortsova; S. V. Shchepetov; N. K. Kharchev; Yu. V. Khol’nov
AbstractResults are presented from studies of the effect of the discharge parameters (in particular, plasma density and heating power) and the characteristics of the magnetic configuration (e.g., rotational transform) on the confinement of a low-pressure plasma during electron-cyclotron resonance heating in the L-2M stellarator. An analysis shows that the plasma energy in the steady-state phase of a discharge is fairly well described by the product of power functions of the plasma density, heating power, and rotational transform:
Plasma Physics Reports | 2012
G. S. Voronov; G. M. Batanov; M. S. Berezhetsky; Yu. F. Bondar; V. D. Borzosekov; I. Yu. Vaphin; D. G. Vasilkov; S. E. Grebenshchikov; I. A. Grishina; L. V. Kolik; E. M. Konchekov; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; D. V. Malakhov; A. I. Meshcheryakov; E. I. Pleshkov; A. E. Petrov; Karen A. Sarksyan; S. N. Satunin; N. N. Skvortsova; V. D. Stepakhin; N. K. Kharchev; Yu. V. Khol’nov; O. I. Fedyanin; V. A. Tsygankov; V. A. Kurnaev; I. V. Vizgalov; V. A. Urusov; A. Antipenkov
Plasma Physics Reports | 2012
G. S. Voronov; M. S. Berezhetskii
W = W_0 n_e^{\alpha _n } P^{\alpha _p } \iota ^{\alpha _\iota }
Plasma Physics Reports | 2010
G. S. Voronov; D. K. Akulina; G. M. Batanov; M. S. Berezhetskii; D. G. Vasil’kov; I. Yu. Vafin; E. V. Voronova; S. E. Grebenshchikov; I. A. Grishina; L. V. Kolik; N. F. Larionova; V. P. Logvinenko; D. V. Malakhov; A. I. Meshcheryakov; Yu. I. Nechaev; A. E. Petrov; Karen A. Sarksyan; V. V. Saenko; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Khol’nov; S. V. Shchepetov