Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.S. Yun is active.

Publication


Featured researches published by G.S. Yun.


Review of Scientific Instruments | 2010

Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations.

G.S. Yun; Woochang Lee; Mj Choi; Joonwon Kim; H. Park; C. W. Domier; Benjamin Tobias; T. Liang; X. Kong; N.C. Luhmann; Ajh Tony Donné

The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.


Review of Scientific Instruments | 2010

Commissioning of electron cyclotron emission imaging instrument on the DIII-D tokamak and first data.

Benjamin Tobias; C. W. Domier; T. Liang; X. Kong; L Yu; G.S. Yun; H. Park; I. Classen; J. Boom; Ajh Tony Donné; T. Munsat; R. Nazikian; M. A. Van Zeeland; R. L. Boivin; N.C. Luhmann

A new electron cyclotron emission imaging diagnostic has been commissioned on the DIII-D tokamak. Dual detector arrays provide simultaneous two-dimensional images of T(e) fluctuations over radially distinct and reconfigurable regions, each with both vertical and radial zoom capability. A total of 320 (20 vertical×16 radial) channels are available. First data from this diagnostic demonstrate the acquisition of coherent electron temperature fluctuations as low as 0.1% with excellent clarity and spatial resolution. Details of the diagnostic features and capabilities are presented.


Applied Optics | 2010

Electron cyclotron emission imaging in tokamak plasmas

T. Munsat; C. W. Domier; X. Kong; T. Liang; N.C. Luhmann; Benjamin Tobias; Woochang Lee; Hyeon K. Park; G.S. Yun; I. G. J. Classen; A. J. H. Donné

We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).


Review of Scientific Instruments | 2014

Quasi 3D ECE imaging system for study of MHD instabilities in KSTARa)

G.S. Yun; Woochang Lee; M.J. Choi; J. Lee; Minwoo Kim; J. Leem; Y. Nam; G.H. Choe; H. Park; D. S. Woo; K. W. Kim; C. W. Domier; N.C. Luhmann; N. Ito; A. Mase; S. G. Lee

A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B0 = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.


Physics of Plasmas | 2012

Two-dimensional imaging of edge-localized modes in KSTAR plasmas unperturbed and perturbed by n=1 external magnetic fields

G.S. Yun; Wai Ming Lee; M.J. Choi; J.A. Lee; Hyeon K. Park; C. W. Domier; N.C. Luhmann; B. Tobias; A. J. H. Donné; J H Lee; Y. M. Jeon; S. W. Yoon; Kstar Team

The temporal evolution of edge-localized modes (ELMs) has been studied using a 2-D electron cyclotron emission imaging system in the KSTAR tokamak. The ELMs are observed to evolve in three distinctive stages: the initial linear growth of multiple filamentary structures having a net poloidal rotation, the interim state of regularly spaced saturated filaments, and the final crash through a short transient phase characterized by abrupt changes in the relative amplitudes and distance among filaments. The crash phase, typically consisted of multiple bursts of a single filament, involves a complex dynamics, poloidal elongation of the bursting filament, development of a fingerlike bulge, and fast localized burst through the finger. Substantial alterations of the ELM dynamics, such as mode number, poloidal rotation, and crash time scale, have been observed under external magnetic perturbations with the toroidal mode number n = 1.


Nuclear Fusion | 2011

Characteristics of the First H-mode Discharges in KSTAR

S.W. Yoon; J.-W. Ahn; Y.M. Jeon; T. Suzuki; S.H. Hahn; W.H. Ko; K.D. Lee; J.I. Chung; Y.U. Nam; J.Y. Kim; Suk-Ho Hong; Hyunsook Kim; W.C. Kim; Y.K. Oh; J.G. Kwak; Y.S. Park; S.A. Sabbagh; D. Humpreys; Y.-S. Na; K.M. Kim; G.S. Yun; A.W. Hyatt; P. Gohil; Y.S. Bae; H.L. Yang; H.K. Park; M. Kwon; G.S. Lee

Typical ELMy H-mode discharges have been obtained in the KSTAR tokamak with the combined auxiliary heating of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). The minimum external heating power required for the L?H transition is about 0.9?MW for a line-averaged density of ~2.0 ? 1019?m?3. There is a clear indication of the increase in the L?H threshold power with decreasing density for densities lower than ~2 ? 1019?m?3. The L?H transitions typically occurred shortly after the beginning of plasma current flattop (Ip = 0.6?MA) period and after the fast shaping to a highly elongated double-null divertor configuration. The maximum heating power available was marginal for the L?H transition, which is also implied by the relatively slow transition time (>10?ms) and the synchronization of the transition with large sawtooth crashes. The initial analysis of thermal energy confinement time (?E) indicates that ?E is higher than the prediction of multi-machine scaling laws by 10?20%. A clear increase in electron and ion temperature in the pedestal is observed in the H-mode phase but the core temperature does not change significantly. On the other hand, the toroidal rotation velocity increased over the whole radial range in the H-mode phase. The measured ELM frequency was around 10?30?Hz for the large ELM bursts and 50?100?Hz for the smaller ones. In addition, very small and high frequency (200?300?Hz) ELMs appeared between large ELM spikes when the ECRH is added to the NBI-heated H-mode plasmas. The drop of total stored energy during a large ELM is up to 5% in most cases.


Nuclear Fusion | 2014

Microwave imaging reflectometry for density fluctuation measurement on KSTAR

Woochang Lee; J. Leem; J.A. Lee; Y. Nam; Myong-Ho Kim; G.S. Yun; Hyeon K. Park; Y.G. Kim; H. Park; K.W. Kim; C. W. Domier; N C Luhmann; K.D. Lee; Y.U. Nam; W.H. Ko; J.H. Jeong; Y.S. Bae

A dual-frequency microwave imaging reflectometry system was commissioned to measure both coherent and turbulent electron density fluctuations in KSTAR plasmas. Imaging of the density fluctuations is achieved with an array of 16 vertically aligned detectors and two X-mode probe beam frequencies (tunable over 78–92 GHz between plasma discharges). The system provides the capability of fluctuation measurements with poloidal wavenumbers (kθ) up to ~3 cm−1 at the maximum sampling rate of 2 MHz. Following extensive laboratory tests, the system was further tested with known coherent density fluctuations during the precursor oscillation of the m/n = 1/1 internal kink mode. The phase information of the reflected beam was compared with the precursor oscillation of the electron temperature measured by an electron cyclotron emission (ECE) radiometer. Density fluctuation levels (δne/ne) at two radial positions separated by the inversion radius (inside and outside) were comparable to temperature fluctuation levels (δTe/Te) from ECE signals. Subsequently, two correlation analysis methods were applied to turbulent fluctuation measurements in a neutral beam heated L-mode plasma to determine the mean poloidal rotation velocities of density fluctuations at two radial positions. The measured mean poloidal velocities were ~8.4 km s−1 at r/a ~ 0.6 and ~5 km s−1 at r/a ~ 0.7 in the clockwise direction, which differed by 1–2 km s−1 with the projected poloidal velocities from the toroidal rotation velocity measured by charge exchange recombination spectroscopy.


Review of Scientific Instruments | 2010

Innovations in optical coupling of the KSTAR electron cyclotron emission imaging diagnostic

T. Liang; Benjamin Tobias; X. Kong; C. W. Domier; N.C. Luhmann; Woochang Lee; G.S. Yun; H. Park

The installation of a new electron cyclotron emission imaging diagnostic for the Korea Superconducting Tokamak Advanced Research (KSTAR) is underway, making use of a unique optical port cassette design, which allows placement of refractive elements inside the cryostat region without adverse effects. The result is unprecedented window access for the implementation of a state of the art imaging diagnostic. A dual-array optical design has been developed, capable of simultaneously imaging the high and low field sides of the plasma with independent features of focal plane translation, vertical zoom, and radial channel spacing. The number of translating optics has been minimized by making use of a zoom lens triplet and parabolic plasma facing lens for maximum channel uniformity over a continuous vertical zoom range of 3:1. The simulated performance of this design is presented along with preliminary laboratory characterization data.


Review of Scientific Instruments | 2010

A synthetic diagnostic for the evaluation of new microwave imaging reflectometry diagnostics for DIII-D and KSTAR.

L. Lei; Benjamin Tobias; C. W. Domier; N.C. Luhmann; G.J. Kramer; Ernest J. Valeo; W. Lee; G.S. Yun; H. Park

The first microwave imaging reflectometry (MIR) system for characterization of fluctuating plasma density has been implemented for the TEXTOR tokamak [H. Park et al., Rev. Sci. Instrum. 75, 3787 (2004)]; an improved MIR system will be installed on DIII-D and KSTAR. The central issue remains in preserving phase information by addressing antenna coupling between the reflection layer and the detector array in the presence of plasma turbulence. A synthetic diagnostic making use of coupled full-wave diffractive codes has been developed in geometries and applied to a variety of optical arrangements. The effectiveness of each scheme is quantitatively compared with respect to the fluctuation levels accessible in the simulation.


Physics of Plasmas | 2011

On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activity

Benjamin Tobias; R. L. Boivin; Je Jurrian Boom; I. Classen; C. W. Domier; Ajh Tony Donné; W.W. Heidbrink; N.C. Luhmann; T. Munsat; C.M. Muscatello; R. Nazikian; H. Park; Donald A. Spong; Alan D. Turnbull; M. A. Van Zeeland; G.S. Yun

Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfven wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous determination of the 2D eigenmode structure. This has provided support for nonperturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfven eigenmodes, and in cases where convective flows or saturated perturbations lead to nonaxisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made toward a comprehensive understanding of fast reconnection in tokamak plasmas.

Collaboration


Dive into the G.S. Yun's collaboration.

Top Co-Authors

Avatar

N.C. Luhmann

University of California

View shared research outputs
Top Co-Authors

Avatar

H. Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

C. W. Domier

University of California

View shared research outputs
Top Co-Authors

Avatar

M.J. Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyeon K. Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Woochang Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Y. Nam

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

W. Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

W.H. Ko

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

J. Leem

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge