Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Schramm is active.

Publication


Featured researches published by G. Schramm.


EJNMMI research | 2014

Correction of scan time dependence of standard uptake values in oncological PET

Joerg van den Hoff; Alexandr Lougovski; G. Schramm; Jens Maus; Liane Oehme; Jan Petr; Bettina Beuthien-Baumann; Joerg Kotzerke; Frank Hofheinz

BackgroundStandard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [ 18F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV.MethodsAssuming irreversible FDG kinetics, SUR is linearly correlated to Km (the metabolic rate of FDG), where the slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately invariant shape of the AIF, this slope (the ‘Patlak time’) is an investigation independent function of scan time. This fact can be used to map SUR and SUV values from different investigations to a common time point for quantitative comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three ‘static scans’ at T=20,35,and 55 min post injection (p.i.) were created, where the last scan defined the reference time point to which the uptake values measured in the other two were corrected. The corrected uptake values were then compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at (78.1 ± 15.9) min p.i.) served as the reference, and the uptake values from the second scan (acquired (39.2 ± 9.9) min later) were corrected accordingly and compared to the reference.ResultsFor the dynamic data, the observed difference between uncorrected values and values at reference time was (-52±4.5)% at T=20 min and (-31±3.7)% at T=35 min for SUR and (-30±6.6)% at T=20 min and (-16±4)% at T=35 min for SUV. After correction, the difference was reduced to (-2.9±6.6)% at T=20 min and (-2.7±5)% at T=35 min for SUR and (1.9% ± 6.2)% at T=20 min and (1.7 ± 3.3)% at T=35 min for SUV. For the DTP studies, the observed differences of SUR and SUV between late and early scans were (48 ± 11)% and (24 ± 8.4)%, respectively. After correction, these differences were reduced to (2.6 ± 6.9)% and (-2.4±7.3)%, respectively.ConclusionIf FDG kinetics is irreversible in the targeted tissue, correction of SUV and SUR for scan time variability is possible with good accuracy. The correction distinctly improves comparability of lesion uptake values measured at different times post injection.


Physics in Medicine and Biology | 2014

Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging

G. Schramm; Jens Maus; Frank Hofheinz; Jan Petr; Alexandr Lougovski; B. Beuthien-Baumann; Ivan Platzek; J. van den Hoff

The aim of this paper is to describe a new automatic method for compensation of metal-implant-induced segmentation errors in MR-based attenuation maps (MRMaps) and to evaluate the quantitative influence of those artifacts on the reconstructed PET activity concentration. The developed method uses a PET-based delineation of the patient contour to compensate metal-implant-caused signal voids in the MR scan that is segmented for PET attenuation correction. PET emission data of 13 patients with metal implants examined in a Philips Ingenuity PET/MR were reconstructed with the vendor-provided method for attenuation correction (MRMap(orig), PET(orig)) and additionally with a method for attenuation correction (MRMap(cor), PET(cor)) developed by our group. MRMaps produced by both methods were visually inspected for segmentation errors. The segmentation errors in MRMap(orig) were classified into four classes (L1 and L2 artifacts inside the lung and B1 and B2 artifacts inside the remaining body depending on the assigned attenuation coefficients). The average relative SUV differences (ε(rel)(av)) between PET(orig) and PET(cor) of all regions showing wrong attenuation coefficients in MRMap(orig) were calculated. Additionally, relative SUV(mean) differences (ε(rel)) of tracer accumulations in hot focal structures inside or in the vicinity of these regions were evaluated. MRMap(orig) showed erroneous attenuation coefficients inside the regions affected by metal artifacts and inside the patients lung in all 13 cases. In MRMap(cor), all regions with metal artifacts, except for the sternum, were filled with the soft-tissue attenuation coefficient and the lung was correctly segmented in all patients. MRMap(cor) only showed small residual segmentation errors in eight patients. ε(rel)(av) (mean ± standard deviation) were: (-56 ± 3)% for B1, (-43 ± 4)% for B2, (21 ± 18)% for L1, (120 ± 47)% for L2 regions. ε(rel) (mean ± standard deviation) of hot focal structures were: (-52 ± 12)% in B1, (-45 ± 13)% in B2, (19 ± 19)% in L1, (51 ± 31)% in L2 regions. Consequently, metal-implant-induced artifacts severely disturb MR-based attenuation correction and SUV quantification in PET/MR. The developed algorithm is able to compensate for these artifacts and improves SUV quantification accuracy distinctly.


Physical Review Letters | 2014

Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.

R. Massarczyk; R. Schwengner; F. Dönau; S. Frauendorf; M. Anders; D. Bemmerer; R. Beyer; C. Bhatia; E. Birgersson; Maik Butterling; Z. Elekes; A. Ferrari; M. E. Gooden; R. Hannaske; A. R. Junghans; M. Kempe; J. H. Kelley; T. Kögler; A. Matic; M. Menzel; S. Müller; T. P. Reinhardt; M. Röder; G. Rusev; K. D. Schilling; Konrad Schmidt; G. Schramm; A. P. Tonchev; W. Tornow; A. Wagner

The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.


European Physical Journal A | 2013

Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

R. Hannaske; Zoltan Elekes; R. Beyer; A. R. Junghans; D. Bemmerer; E. Birgersson; A. Ferrari; E. Grosse; Mathias Kempe; T. Kögler; M. Marta; R. Massarczyk; A. Matic; G. Schramm; R. Schwengner; A. Wagner

Neutron total cross sections of 197Au and natTa have been measured at the nELBE photoneutron source in the energy range 0.1–10MeV with a statistical uncertainty of up to 2% and a total systematic uncertainty of 1%. This facility is optimized for the fast neutron energy range and combines an excellent time structure of the neutron pulses (electron bunch width 5ps) with a short flight path of 7m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and background conditions than found at other neutron sources.


Nuklearmedizin | 2014

In-vivo-Evaluation der Quantifizierungsgenauigkeit der PET

Jens Maus; Frank Hofheinz; G. Schramm; Liane Oehme; B. Beuthien-Baumann; M. Lukas; Ralph Buchert; Jörg Steinbach; Jörg Kotzerke; J. van den Hoff

UNLABELLEDnQuantitative positron emission tomography (PET) requires accurate scanner calibration, which is commonly performed using phantoms. It is not clear to what extent this procedure ensures quantitatively correct results in vivo, since certain conditions differ between phantom and patient scans.nnnAIMnWe, therefore, have evaluated the actual quantification accuracy in vivo of PET under clinical routine conditions.nnnPATIENTS, METHODSnWe determined the activity concentration in the bladder in patients undergoing routine [18F]FDG whole body investigations with three different PET scanners (Siemens ECAT EXACT HR+ PET: n = 21; Siemens Biograph 16 PET/CT: n = 16; Philips Gemini-TF PET/CT: nxa0=xa019). Urine samples were collected immediately after scan. Activity concentration in the samples was determined in well counters cross-calibrated against the respective scanner. The PET (bladder) to well counter (urine sample) activity concentration ratio was determined.nnnRESULTSnActivity concentration in the bladder (PET) was systematically lower than in the urine samples (well counter). The patient-averaged PET to well counter ratios for the investigated scanners are (mean ± SEM): 0.881 ± 0.015 (ECAT HR+), 0.898 ± 0.024 (Biograph 16), 0.932 ± 0.024 (Gemini-TF). These values correspond to underestimates by PET of 11.9%, 10.2%, and 6.8%, respectively.nnnCONCLUSIONSnThe investigated PET systems consistently underestimate activity concentration in the bladder. The comparison of urine samples with PET scans of the bladder is a straightforward means for in vivo evaluation of the expectable quantification accuracy. The method might be interesting for multi-center trials, for additional quality assurance in PET and for investigation of PET/MR systems for which clear proof of sufficient quantitative accuracy in vivo is still missing.


Nuklearmedizin | 2014

Evaluation of PET quantification accuracy in vivo

Jens Maus; Frank Hofheinz; G. Schramm; Liane Oehme; B. Beuthien-Baumann; M. Lukas; Ralph Buchert; Jörg Steinbach; Jörg Kotzerke; J. van den Hoff

UNLABELLEDnQuantitative positron emission tomography (PET) requires accurate scanner calibration, which is commonly performed using phantoms. It is not clear to what extent this procedure ensures quantitatively correct results in vivo, since certain conditions differ between phantom and patient scans.nnnAIMnWe, therefore, have evaluated the actual quantification accuracy in vivo of PET under clinical routine conditions.nnnPATIENTS, METHODSnWe determined the activity concentration in the bladder in patients undergoing routine [18F]FDG whole body investigations with three different PET scanners (Siemens ECAT EXACT HR+ PET: n = 21; Siemens Biograph 16 PET/CT: n = 16; Philips Gemini-TF PET/CT: nxa0=xa019). Urine samples were collected immediately after scan. Activity concentration in the samples was determined in well counters cross-calibrated against the respective scanner. The PET (bladder) to well counter (urine sample) activity concentration ratio was determined.nnnRESULTSnActivity concentration in the bladder (PET) was systematically lower than in the urine samples (well counter). The patient-averaged PET to well counter ratios for the investigated scanners are (mean ± SEM): 0.881 ± 0.015 (ECAT HR+), 0.898 ± 0.024 (Biograph 16), 0.932 ± 0.024 (Gemini-TF). These values correspond to underestimates by PET of 11.9%, 10.2%, and 6.8%, respectively.nnnCONCLUSIONSnThe investigated PET systems consistently underestimate activity concentration in the bladder. The comparison of urine samples with PET scans of the bladder is a straightforward means for in vivo evaluation of the expectable quantification accuracy. The method might be interesting for multi-center trials, for additional quality assurance in PET and for investigation of PET/MR systems for which clear proof of sufficient quantitative accuracy in vivo is still missing.


Journal of Physics: Conference Series | 2016

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

R. Hannaske; D. Bemmerer; R. Beyer; E. Birgersson; A. Ferrari; E. Grosse; A. R. Junghans; M. Kempe; T. Kögler; K Kosev; M. Marta; R. Massarczyk; A. Matic; K D Schilling; G. Schramm; R. Schwengner; A. Wagner; D. Yakorev

The photodissociation of the deuteron is a key reaction in Big Bang nucleosynthesis, but is only sparsely measured in the relevant energy range. To determine the cross section of the d(γ,n)p reaction we used pulsed bremsstrahlung and measured the time-of-flight of the neutrons. In this article, we describe how the efficiency of the neutron detectors was experimentally determined and how the modification of the neutron spectrum by parts of the experimental setup was simulated and corrected.


Proceedings of the Fourteenth International Symposium | 2013

EXPERIMENTS WITH NEUTRONS AND PHOTONS AT ELBE

R. Schwengner; R. Beyer; A. R. Junghans; R. Massarczyk; G. Schramm; D. Bemmerer; E. Birgersson; A. Ferrari; E. Grosse; R. Hannaske; M. Kempe; T. Kögler; A. Matic; K. D. Schilling; A. Wagner; G. Rusev; Ayano Makinaga; T Belgya; Z Kis; L Szentmiklosi; J. L Weil; F. Bečvář; M. Krticka

We describe the photo-neutron source at the superconducting electron accelerator ELBE of the Helmholtz-Zentrum Dresden-Rossendorf and present first experiments to determine cross sections of inelastic scattering of neutrons in the MeV range. We discuss analysis and results of photon-scattering experiments using the bremsstrahlung facility at ELBE. A consistent determination of the dipole strength function from the combination of photon scattering and radiative neutron capture is presented.


Physical Review C | 2012

Electromagnetic dipole strength of 136Ba below the neutron separation energy

R. Massarczyk; R. Schwengner; F. Dönau; E. Litvinova; G. Rusev; R. Beyer; R. Hannaske; A. R. Junghans; M. Kempe; J. H. Kelley; T. Kögler; K. Kosev; E. Kwan; M. Marta; A. Matic; C. Nair; R. Raut; K. D. Schilling; G. Schramm; D. Stach; A. P. Tonchev; W. Tornow; E. Trompler; A. Wagner; D. Yakorev


Physical Review C | 2012

Dipole strength in 78Se below the neutron separation energy from a combined analysis of 77Se(n,γ) and 78Se(γ,γ ′) experiments

G. Schramm; R. Massarczyk; A. R. Junghans; T. Belgya; R. Beyer; E. Birgersson; E. Grosse; M. Kempe; Z. Kis; K. Kosev; M. Krtička; A. Matic; K. D. Schilling; R. Schwengner; L. Szentmiklósi; A. Wagner; J. L. Weil

Collaboration


Dive into the G. Schramm's collaboration.

Top Co-Authors

Avatar

A. R. Junghans

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

A. Wagner

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

R. Beyer

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

R. Massarczyk

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

R. Schwengner

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

R. Hannaske

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Grosse

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Birgersson

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

A. Matic

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

M. Kempe

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge