Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Tosti is active.

Publication


Featured researches published by G. Tosti.


Nature | 2008

The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst

Alan P. Marscher; Svetlana G. Jorstad; Francesca D. D'Arcangelo; Paul S. Smith; George Grant Williams; Valeri M. Larionov; Haruki Oh; Alice R. Olmstead; Margo F. Aller; Hugh D. Aller; I. M. McHardy; A. Lähteenmäki; M. Tornikoski; Esko Valtaoja; V. A. Hagen-Thorn; Eugenia N. Kopatskaya; Walter Kieran Gear; G. Tosti; Omar M. Kurtanidze; Maria G. Nikolashvili; L. A. Sigua; H. Richard Miller; Wesley T. Ryle

Blazars are the most extreme active galactic nuclei. They possess oppositely directed plasma jets emanating at near light speeds from accreting supermassive black holes. According to theoretical models, such jets are propelled by magnetic fields twisted by differential rotation of the black hole’s accretion disk or inertial-frame-dragging ergosphere. The flow velocity increases outward along the jet in an acceleration and collimation zone containing a coiled magnetic field. Detailed observations of outbursts of electromagnetic radiation, for which blazars are famous, can potentially probe the zone. It has hitherto not been possible to either specify the location of the outbursts or verify the general picture of jet formation. Here we report sequences of high-resolution radio images and optical polarization measurements of the blazar BL Lacertae. The data reveal a bright feature in the jet that causes a double flare of radiation from optical frequencies to TeV γ-ray energies, as well as a delayed outburst at radio wavelengths. We conclude that the event starts in a region with a helical magnetic field that we identify with the acceleration and collimation zone predicted by the theories. The feature brightens again when it crosses a standing shock wave corresponding to the bright ‘core’ seen on the images.


The Astrophysical Journal | 1998

Multiwavelength Observations of a Dramatic High-Energy Flare in the Blazar 3C 279

Ann E. Wehrle; E. Pian; Claudia M. Urry; L. Maraschi; I. M. McHardy; A. J. Lawson; G. Ghisellini; R. C. Hartman; Greg M. Madejski; F. Makino; Alan P. Marscher; S. J. Wagner; J. R. Webb; G. S. Aldering; Margo F. Aller; Hugh D. Aller; Dana E. Backman; T. J. Balonek; P. Boltwood; Jerry T. Bonnell; J. Caplinger; A. Celotti; W. Collmar; J. Dalton; A. Drucker; R. Falomo; C. E. Fichtel; Wolfram Freudling; Walter Kieran Gear; N. Gonzales

The blazar 3C 279, one of the brightest identified extragalactic objects in the γ-ray sky, underwent a large (factor of ~10 in amplitude) flare in γ-rays toward the end of a 3 week pointing by Compton Gamma Ray Observatory (CGRO), in 1996 January-February. The flare peak represents the highest γ-ray intensity ever recorded for this object. During the high state, extremely rapid γ-ray variability was seen, including an increase of a factor of 2.6 in ~8 hr, which strengthens the case for relativistic beaming. Coordinated multifrequency observations were carried out with Rossi X-Ray Timing Explorer (RXTE), Advanced Satellite for Cosmology and Astrophysics (ASCA; or, Astro-D), Roentgen Satellite (ROSAT), and International Ultraviolet Explorer (IUE) and from many ground-based observatories, covering most accessible wavelengths. The well-sampled, simultaneous RXTE light curve shows an outburst of lower amplitude (factor of 3) well correlated with the γ-ray flare without any lag larger than the temporal resolution of ~1 day. The optical-UV light curves, which are not well sampled during the high-energy flare, exhibit more modest variations (factor of ~2) and a lower degree of correlation. The flux at millimetric wavelengths was near a historical maximum during the γ-ray flare peak, and there is a suggestion of a correlated decay. We present simultaneous spectral energy distributions of 3C 279 prior to and near to the flare peak. The γ-rays vary by more than the square of the observed IR-optical flux change, which poses some problems for specific blazar emission models. The synchrotron self-Compton (SSC) model would require that the largest synchrotron variability occurred in the mostly unobserved submillimeter/far-infrared region. Alternatively, a large variation in the external photon field could occur over a timescale of a few days. This occurs naturally in the mirror model, wherein the flaring region in the jet photoionizes nearby broad emission line clouds, which, in turn, provide soft external photons that are Comptonized to γ-ray energies.


Astronomy and Astrophysics | 2007

REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination

Emilio Molinari; S. D. Vergani; Daniele Malesani; S. Covino; Paolo D'Avanzo; Guido Chincarini; Filippo Maria Zerbi; L. A. Antonelli; Paolo Conconi; Vincenzo Testa; G. Tosti; Fabrizio Vitali; Francesco D'Alessio; G. Malaspina; L. Nicastro; Eliana Palazzi; Dafne Guetta; Sergio Campana; Paolo Goldoni; N. Masetti; E. J. A. Meurs; Alessandro Monfardini; Laura Norci; E. Pian; S. Piranomonte; D. Rizzuto; M. Stefanon; L. Stella; G. Tagliaferri; P. Ward

Context. Gamma-ray burst (GRB) emission is believed to originate in highly relativistic fireballs. Aims. Currently, only lower limits were securely set to the initia l fireball Lorentz factor 0. We aim to provide a direct measure of 0. Methods. The early-time afterglow light curve carries information about 0, which determines the time of the afterglow peak. We have obtained early observations of the near-infrared afte rglows of GRB 060418 and GRB 060607A with the REM robotic telescope. Results. For both events, the afterglow peak could be clearly singled out, allowing a firm determination of the fireball Lorentz of 0∼ 400, fully confirming the highly relativistic nature of GRB fi reballs. The deceleration radius was inferred to be Rdec≈ 10 17 cm. This is much larger than the internal shocks radius (believed to power the prompt emission), thus providing further evidence for a different origin of the prompt and afterglow stages of the GRB.E. Molinari, S.D. Vergani , D. Malesani , S. Covino, P. D’Avanzo, G. Chincarini , F.M. Zerbi, L.A. Antonelli, P. Conconi , V. Testa, G. Tosti , F. Vitali, F. D’Alessio, G. Malaspina, L. Nicastro, E. Palazzi , D. Guetta, S. Campana , P. Goldoni , N. Masetti , E.J.A. Meurs, A. Monfardini, L. Norci, E. Pian, S. Piranomonte , D. Rizzuto, M. Stefanon, L. Stella, G. Tagliaferri , P.A. Ward, G. Ihle, L. Gonzalez, A. Pizarro, P. Sinclair, J. Valenzuela 15


Astronomy and Astrophysics | 2003

Optical and radio behaviour of the BL Lacertae object 0716+714

C. M. Raiteri; Massimo Villata; G. Tosti; R. Nesci; E. Massaro; Margo F. Aller; Hugh D. Aller; H. Teräsranta; Omar M. Kurtanidze; M. G. Nikolashvili; M. A. Ibrahimov; I. E. Papadakis; T. P. Krichbaum; A. Kraus; A. Witzel; H. Ungerechts; U. Lisenfeld; U. Bach; G. Cimò; S. Ciprini; L. Fuhrmann; G. N. Kimeridze; L. Lanteri; M. Maesano; F. Montagni; G. Nucciarelli; Luisa Ostorero

Eight optical and four radio observatories have been intensively monitoring the BL Lac object 0716+714 in the last years: 4854 data points have been collected in the UBVRI bands since 1994, while radio light curves extend back to 1978. Many of these data, which all together constitute the widest optical and radio database available on this object, are presented here for the first time. Four major optical outbursts were observed at the beginning of 1995, in late 1997, at the end of 2000, and in fall 2001. In particular, an exceptional brightening of 2.3 mag in 9 days was detected in the R band just before the BeppoSAX pointing of October 30, 2000. A big radio outburst lasted from early 1998 to the end of 1999. The long-term trend shown by the optical light curves seems to vary with a characteristic time scale of about 3.3 years, while a longer period of 5.5–6 years seems to characterize the radio long-term variations. In general, optical colour indices are only weakly correlated with brightness; a clear spectral steepening trend was observed during at least one long-lasting dimming phase. Moreover, the optical spectrum became steeper after


Astronomy and Astrophysics | 2012

Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars

P. Giommi; G. Polenta; A. Lähteenmäki; D. J. Thompson; Milvia Capalbi; S. Cutini; D. Gasparrini; J. González-Nuevo; J. León-Tavares; M. López-Caniego; M. N. Mazziotta; C. Monte; Matteo Perri; S. Rainò; G. Tosti; A. Tramacere; Francesco Verrecchia; Hugh D. Aller; M. F. Aller; E. Angelakis; D. Bastieri; A. Berdyugin; A. Bonaldi; L. Bonavera; C. Burigana; D. N. Burrows; S. Buson; E. Cavazzuti; Guido Chincarini; S. Colafrancesco

\rm JD \sim 2\,451\,000


The Astrophysical Journal | 2001

Multiepoch multiwavelength spectra and models for blazar 3C 279

R. C. Hartman; M. Böttcher; G. Aldering; Hugh D. Aller; Margo F. Aller; Dana E. Backman; Thomas J. Balonek; D. L. Bertsch; S. D. Bloom; H. Bock; Paul Boltwood; Michael T. Carini; W. Collmar; G. de Francesco; Elizabeth Colleen Ferrara; Wolfram Freudling; Walter Kieran Gear; Patrick B. Hall; J. Heidt; Philip A. Hughes; Stanley D. Hunter; Shardha Jogee; W. N. Johnson; G. Kanbach; S. Katajainen; M. Kidger; Tsuneo Kii; M. Koskimies; A. Kraus; H. Kubo

, the change occurring in the decaying phase of the late-1997 outburst. The radio flux behaviour at different frequencies is similar, but the flux variation amplitude decreases with increasing wavelength. The radio spectral index varies with brightness (harder when brighter), but the radio fluxes seem to be the sum of two different-spectrum contributions: a steady base level and a harder-spectrum variable component. Once the base level is removed, the radio variations appear as essentially achromatic, similarly to the optical behaviour. Flux variations at the higher radio frequencies lead the lower-frequency ones with week–month time scales. The behaviour of the optical and radio light curves is quite different, the broad radio outbursts not corresponding in time to the faster optical ones and the cross-correlation analysis indicating only weak correlation with long time lags. However, minor radio flux enhancements simultaneous with the major optical flares can be recognized, which may imply that the mechanism producing the strong flux increases in the optical band also marginally affects the radio one. On the contrary, the process responsible for the big radio outbursts does not seem to affect the optical emission.


Astronomy and Astrophysics | 2001

Optical and radio variability of the BL Lacertae object AO 0235+16: A possible 5-6 year periodicity

C. M. Raiteri; M. Villata; Hugh D. Aller; Margo F. Aller; J. Heidt; Omar M. Kurtanidze; L. Lanteri; M. Maesano; E. Massaro; Franco Montagni; R. Nesci; Kim K. Nilsson; Maria G. Nikolashvili; P Nurmi; L Ostorero; Tapio Pursimo; R Rekola; A. Sillanpää; L. Takalo; H. Teräsranta; G. Tosti; T. J. Balonek; Markus Feldt; A Heines; C Heisler; J. Hu; M. Kidger; J. R Mattox; E. J McGrath; A. Pati

We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and -ray bands, and we compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi Large Area Telescope (LAT), whereas 30 to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the -ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, withh i 0 up to about 70 GHz, above which it steepens toh i 0:65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency ( S ) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples withh S i = 10 13:1 0:1 Hz, while the mean inverse-Compton peak frequency,h IC i, ranges from 10 21 to 10 22 Hz. The distributions of S and of IC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with -ray selected blazars peaking at 7 or more, and radio-selected blazars at values close to 1, thus implying that the common assumption that the blazar power budget is largely dominated by high-energy emission is a selection e ect. A comparison of our multi-frequency data with theoretical predictions shows that simple homogeneous SSC models cannot explain the simultaneous SEDs of most of the -ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and S predicted by the blazar sequence.


The Astrophysical Journal | 2008

MULTIWAVELENGTH OBSERVATIONS OF THE POWERFUL GAMMA-RAY QUASAR PKS 1510 089: CLUES ON THE JET COMPOSITION

J. Kataoka; G. M. Madejski; Marek Sikora; P. W. A. Roming; M. M. Chester; Dirk Grupe; Y. Tsubuku; Rie Sato; Nobuyuki Kawai; G. Tosti; D. Impiombato; Y. Y. Kovalev; Yu. A. Kovalev; Philip G. Edwards; S. J. Wagner; R. Moderski; Lukasz Stawarz; Tadayuki Takahashi; Sei-ichiro Watanabe

Of the blazars detected by EGRET in GeV γ-rays, 3C 279 is not only the best observed by EGRET but also one of the best monitored at lower frequencies. We have assembled 11 spectra, from GHz radio through GeV γ-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial γ-ray contribution to the total luminosity of the object; in a high state, the γ-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and γ-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton plus external Compton γ-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low γ-ray intensity.


Astronomy and Astrophysics | 2006

Log-parabolic spectra and particle acceleration in blazars - III. SSC emission in the TeV band from Mkn 501

E. Massaro; Andrea Tramacere; Matteo Perri; P. Giommi; G. Tosti

The BL Lacertae object AO 0235+16 is well known for its extreme optical and radio variability. New optical and radio data have been collected in the last four years by a wide international collaboration, which conrm the intense activity of this source: on the long term, overall variations of 5 mag in the R band and up to a factor 18 in the radio fluxes were detected, while short-term variability up to 0:5 mag in a few hours and 1: 3m ag in one day was observed in the optical band. The optical data also include the results of the Whole Earth Blazar Telescope (WEBT) rst-light campaign organized in November 1997, involving a dozen optical observatories. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection and Discrete Correlation Function (DCF) analysis. On the long term, the autocorrelation function of the optical data shows a double-peaked maximum at 4100{4200 days (11:2{11:5 years), while a double-peaked maximum at 3900{4200 days (10:7{11:5 years) is visible in the radio autocorrelation functions. The existence of this similar characteristic time scale of variability in the two bands is by itself an indication of optical-radio correlation. A further analysis by means of Discrete Fourier Transform (DFT) technique and folded light curves reveals that the major radio outbursts repeat quasi-regularly with a periodicity of5:7 years, i.e. half the above time scale. This period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them. Visual inspection and DCF analysis of the optical and radio light curves then reveal that in some cases optical outbursts seem to be simultaneous with radio ones, but in other cases they lead the radio events. Moreover, a deep inspection of the radio light curves suggests that in at least two occasions (the 1992{1993 and 1998 outbursts) flux variations at the higher frequencies may have led those at the lower ones.


The Astrophysical Journal | 2012

The WISE gamma-ray strip parametrization: the nature of the gamma-ray Active Galactic Nuclei of Uncertain type

F. Massaro; R. D'Abrusco; G. Tosti; M. Ajello; D. Gasparrini; J. E. Grindlay; Howard A. Smith

We present the results from a multiwavelength campaign conducted in August 2006 of the powerful {gamma}-ray quasar PKS 1510--089 (z = 0.361). This campaign commenced with a deep Suzaku observation lasting three days for a total exposure time of 120 ks, and continued with Swift monitoring over 18 days. Besides Swift observations, which sampled the optical/UV flux in all 6 UVOT filters as well as the X-ray spectrum in the 0.3--10 keV energy range, the campaign included ground-based optical and radio data, and yielded a quasi-simultaneous broad-band spectral energy distribution from 109 Hz to 1019 Hz. Thanks to its low instrumental background, the Suzaku observation provided a high S/N X-ray spectrum, which is well represented by an extremely hard power-law with photon index {Gamma}{approx_equal}1.2, augmented by a soft component apparent below 1 keV, which is well described by a black-body model with temperature kT {approx_equal}0.2 keV. Monitoring by Suzaku revealed temporal variability which is different between the low and high energy bands, again suggesting the presence of a second, variable component in addition to the primary power-law emission. We model the broadband spectrum of PKS 1510--089 assuming that the high energy spectral component results from Comptonization of infrared radiation produced by hot dust located in the surrounding molecular torus. In the adopted internal shock scenario, the derived model parameters imply that the power of the jet is dominated by protons but with a number of electrons/positrons exceeding a number of protons by a factor {approx} 10. We also find that inhomogeneities responsible for the shock formation, prior to the collision may produce bulk-Compton radiation which can explain the observed soft X-ray excess and possible excess at {approx} 18 keV. We note, however, that the bulk-Compton interpretation is not unique, and the observed soft excess could arise as well via some other processes discussed briefly in the text.

Collaboration


Dive into the G. Tosti's collaboration.

Researchain Logo
Decentralizing Knowledge