Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Trinchero is active.

Publication


Featured researches published by G. Trinchero.


Physical Review D | 2014

First Axion Results from the XENON100 Experiment

E. Aprile; F. Agostini; M. Alfonsi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; A. Brown; E. Brown; Stefan Brünner; G. Bruno; R. Budnik; João Cardoso; A.P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Geis

We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, g Ae , has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no evidence for a signal. By rejecting g Ae larger than 7.7×10 −12 (90% C.L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80  eV/c 2 , respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain g Ae to be lower than 1×10 −12 (90% C.L.) for masses between 5 and 10  keV/c 2 .


Physical Review Letters | 2012

Measurement of the velocity of neutrinos from the CNGS beam with the large volume detector.

N. Agafonova; M. Aglietta; P. Antonioli; V. V. Ashikhmin; G. Bari; Bertoni R; E. Bressan; G. Bruno; Dadykin Vl; W. Fulgione; P. Galeotti; M. Garbini; P. L. Ghia; P. Giusti; E. Kemp; A. Malgin; B. Miguez; A. Molinario; R. Persiani; I. A. Pless; V. G. Ryasny; O. G. Ryazhskaya; O. Saavedra; G. Sartorelli; Shakyrianova Ir; M. Selvi; G. Trinchero; C. Vigorito; V. F. Yakushev; A. Zichichi

We report the measurement of the time of flight of ∼17 GeV ν(μ) on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8 × 10(-6) < (v(ν)-c)/c < 3.1 × 10(-6) (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements.


European Physical Journal C | 2015

Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

E. Aprile; F. Agostini; M. Alfonsi; L. Arazi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; Lukas Bütikofer; João Cardoso; Daniel Coderre; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; A. Di Giovanni; E. Duchovni; S. Fattori; A. D. Ferella; A. Fieguth

The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.


Journal of Instrumentation | 2014

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

E. Aprile; F. Agostini; M. Alfonsi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; A. Breskin; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; João Cardoso; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; M. Garbini; C. Geis

XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2 10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ~ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.


Physical Review D | 2017

Erratum: First axion results from the XENON100 experiment [Phys. Rev. D 90 , 062009 (2014)]

E. Aprile; F. Agostini; M. Alfonsi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; April S. Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; João Cardoso; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Geis

Collaboration


Dive into the G. Trinchero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Brown

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Arisaka

University of California

View shared research outputs
Top Co-Authors

Avatar

P. Beltrame

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge