G. Wanner
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Wanner.
Classical and Quantum Gravity | 2009
M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; P. Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; A. M. Cruise; Karsten Danzmann; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; M. Freschi; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; M. Hewitson; D. Hollington; J. Hough; M. Hueller; D. Hoyland
LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.
Classical and Quantum Gravity | 2011
F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter
LISA Pathfinder, the second of the European Space Agencys Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun?Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500?000 km by 800?000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.
Classical and Quantum Gravity | 2012
F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; M. Caleno; Priscilla Canizares; A. Cavalleri; M. Cesa; M. Chmeissani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; V. Ferrone; Walter Fichter
In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.
Classical and Quantum Gravity | 2009
M. Hewitson; M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; D. Hollington; J. Hough; M. Hueller; D. Hoyland; O. Jennrich; B. Johlander
The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.
Classical and Quantum Gravity | 2011
F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; E. Fitzsimons
As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.
Applied Optics | 2015
Sönke Schuster; G. Wanner; Michael Tröbs; Gerhard Heinzel
The omnipresent tilt-to-length coupling in two-beam laser interferometers, frequently a nuisance in precision measurements, vanishes for the singular case of two beams with identical parameters and complete detection of both beams without clipping. This effect has been observed numerically and is explained in this manuscript by the cancellation of two very different effects of equal magnitude and opposite sign.
Applied Optics | 2013
Evgenia Kochkina; G. Wanner; Dennis Schmelzer; Michael Tröbs; Gerhard Heinzel
The paper introduces the complete model of the general astigmatic Gaussian beam as the most general case of the Gaussian beam in the fundamental mode. This includes the laws of propagation, reflection, and refraction as well as the equations for extracting from the complex-valued beam description its real-valued parameters, such as the beam spot radii and the radii of curvature of the wavefront. The suggested model is applicable to the case of an oblique incidence of the beam at any 3D surface that can be approximated by the second-order equation at the point of incidence. Thus it can be used in simulations of a large variety of 3D optical systems. The provided experimental validation of the model shows good agreement with simulations.
Journal of Physics: Conference Series | 2009
M. Hirth; Walter Fichter; N. Brandt; Alexander Schleicher; D. Gerardi; G. Wanner
Aside from LISA Pathfinders top-level acceleration requirement, there is a stringent independent requirement for the accuracy of the optical metrology system. In case of a perfectly aligned metrology system (optical bench and test masses) it should rather be independent of residual displacement jitter due to control. However, this ideal case will not be achieved as mechanical tolerances and uncertainties lead to a direct impact of test mass and spacecraft displacement jitter on the optical measurement accuracy. In this paper, we present a strategy how to cover these effects for a systematic requirement breakdown. We use a simplified nonlinear geometrical model for the differential distance measurement of the test masses which is linearized and linked to the equations of motion for both the spacecraft and the two test masses. This leads from test mass relative displacement to a formulation in terms of applied force/torque and thus allows to distinguish the absolute motion of each of the three bodies. It further shows how motions in each degree of freedom couple linearly into the optical measurement via DC misalignments of the laser beam and the test masses. This finally allows for deriving requirements on the alignment accuracy of components and on permittable closed-loop acceleration noise. In the last part a budget for the expected measurement performance is compiled from simulations as no measurement data is available yet.
Optics Express | 2016
Sönke Schuster; Michael Tröbs; G. Wanner; Gerhard Heinzel
The coupling between beam tilt and longitudinal path length readout in a setup representing a LISA test mass interferometer was reduced to below 2 µm/rad using a two lens imaging system. This was achieved by the use of a homodyne equal arm-length Mach-Zehnder interferometer and suppression of the dominating effects of higher order Gaussian modes and longitudinal actuator movement. The latter was subtracted using the phase signal of a large single element photo diode.
Journal of Physics: Conference Series | 2015
M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; E. Fitzsimons; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; I. Harrison
Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board.