G. Webster
National Health Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Webster.
International Journal of Radiation Oncology Biology Physics | 2012
Kean Fatt Ho; Thomas E Marchant; Christopher Moore; G. Webster; Carl G Rowbottom; Hazel Penington; Lip W Lee; Beng Yap; Andrew J Sykes; N. Slevin
PURPOSE Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. METHODS AND MATERIALS Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT was prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. RESULTS Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a ≥10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. CONCLUSIONS Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated to further confirm these results. Nevertheless, kilovoltage CBCT is a valuable tool for patient setup verification and monitoring of dosimetric variation during radiotherapy.
British Journal of Radiology | 2009
G. Webster; J E Kilgallon; Kean F Ho; Carl G Rowbottom; Nicholas J Slevin; Ranald I Mackay
Uncertainty and inconsistency are observed in target volume delineation in the head and neck for radiotherapy treatment planning based only on CT imaging. Alternative modalities such as MRI have previously been incorporated into the delineation process to provide additional anatomical information. This work aims to improve on previous studies by combining good image quality with precise patient immobilisation in order to maintain patient position between scans. MR images were acquired using quadrature coils placed over the head and neck while the patient was immobilised in the treatment position using a five-point thermoplastic shell. The MR image and CT images were automatically fused in the Pinnacle treatment planning system using Syntegra software. Image quality, distortion and accuracy of the image registration using patient anatomy were evaluated. Image quality was found to be superior to that acquired using the body coil, while distortion was < 1.0 mm to a radius of 8.7 cm from the scan centre. Image registration accuracy was found to be 2.2 mm (+/- 0.9 mm) and < 3.0 degrees (n = 6). A novel MRI technique that combines good image quality with patient immobilization has been developed and is now in clinical use. The scan duration of approximately 15 min has been well tolerated by all patients.
International Journal of Radiation Oncology Biology Physics | 2008
G. Webster; Carl G Rowbottom; Kean F Ho; Nicholas J Slevin; Ranald I Mackay
PURPOSE Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. METHODS AND MATERIALS A total of 13 oropharyngeal cancer whole-field IMRT plans were planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. RESULTS An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. CONCLUSION The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.
Clinical Oncology | 2014
Mark Warren; G. Webster; W David J Ryder; Carl G Rowbottom; Corinne Faivre-Finn
AIMS Recent clinical series suggest that treating patients with isotoxic twice-daily radiotherapy may be beneficial. This dosimetric planning study compared the use of intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DRT) to deliver isotoxic treatment for non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Twenty patients with stage II/III NSCLC were selected. A dose-escalated plan was produced retrospectively for each using three different methods: (i) three to five beams 3DRT; (ii) seven beams inverse-planned conformal radiotherapy; (iii) seven beams IMRT. The starting point for dose escalation was 55.8 Gy in 1.8 Gy per fraction twice-daily. The number of fractions was then increased until one or more organ at risk tolerance dose was exceeded or a maximum dose of 79.2 Gy was reached. RESULTS The median escalated doses were 70.2, 66.6 and 64.8 Gy for IMRT, 3DRT and inverse-planned conformal radiotherapy, respectively. IMRT allowed a significant dose increase in comparison with the other two methods (P < 0.05), whereas no significant difference was found between 3DRT and inverse-planned conformal radiotherapy. IMRT was more successful at escalating dose in patients where the brachial plexus and spinal canal were close to the planning target volume. IMRT did not allow the escalation of dose beyond 70.2 Gy (82.8 Gy BED10, 69 Gy EQD2) due to the proximity of disease to the great vessels and the proximal bronchial tree. CONCLUSIONS IMRT allows increased dose escalation compared with conformal radiotherapy. However, there is limited opportunity to escalate the prescription dose beyond 70.2 Gy twice-daily in disease close to the central mediastinal structures.
Radiotherapy and Oncology | 2009
G. Webster; Carl G Rowbottom; Ranald I Mackay
BACKGROUND AND PURPOSE High density materials create severe artefacts in the computed tomography (CT) scans used for radiotherapy dose calculations. Increased use of intensity-modulated radiotherapy (IMRT) to treat oropharyngeal cancers raises concerns over the accuracy of the resulting dose calculation. This work quantifies their impact and evaluates a simple corrective technique. MATERIALS AND METHODS Fifteen oropharyngeal patients with severe artefacts were retrospectively planned with IMRT using two different CT/density look-up tables. Each plan was recalculated using a corrected CT dataset to evaluate the dose distribution delivered to the patient. Plan quality in the absence of dental artefacts was similarly assessed. A range of dosimetric and radiobiological parameters were compared pre- and post-correction. RESULTS Plans using a standard CT/density look-up table (density 1.8 g/cm(3)) revealed inconsistent inter-patient errors, mostly within clinical acceptance, although potentially significantly reducing target coverage for individual patients. Using an extended CT/density look-up table (density 10.0 g/cm(3)) greatly reduced the errors for 13/15 patients. In 2/15 patients with residual errors the CTV extended into the severely affected region and could be corrected by applying a simple manual correction. CONCLUSIONS Use of an extended CT/density look-up table together with a simple manual bulk density correction reduces the impact of dental artefacts on head and neck IMRT planning to acceptable levels.
Medical Dosimetry | 2009
G. Webster; Carl G Rowbottom; Ranald I Mackay
Image-guided radiotherapy (IGRT) can potentially improve the accuracy of delivery of radiotherapy treatments by providing high-quality images of patient anatomy in the treatment position that can be incorporated into the treatment setup. The achievable accuracy and precision of delivery of highly complex head-and-neck intensity modulated radiotherapy (IMRT) plans with an IGRT technique using an Elekta Synergy linear accelerator and the Pinnacle Treatment Planning System (TPS) was investigated. Four head-and-neck IMRT plans were delivered to a semi-anthropomorphic head-and-neck phantom and the dose distribution was measured simultaneously by up to 20 microMOSFET (metal oxide semiconductor field-effect transmitter) detectors. A volumetric kilovoltage (kV) x-ray image was then acquired in the treatment position, fused with the phantom scan within the TPS using Syntegra software, and used to recalculate the dose with the precise delivery isocenter at the actual position of each detector within the phantom. Three repeat measurements were made over a period of 2 months to reduce the effect of random errors in measurement or delivery. To ensure that the noise remained below 1.5% (1 SD), minimum doses of 85 cGy were delivered to each detector. The average measured dose was systematically 1.4% lower than predicted and was consistent between repeats. Over the 4 delivered plans, 10/76 measurements showed a systematic error > 3% (3/76 > 5%), for which several potential sources of error were investigated. The error was ultimately attributable to measurements made in beam penumbrae, where submillimeter positional errors result in large discrepancies in dose. The implementation of an image-guided technique improves the accuracy of dose verification, particularly within high-dose gradients. The achievable accuracy of complex IMRT dose delivery incorporating image-guidance is within +/- 3% in dose over the range of sample points. For some points in high-dose gradients, submillimeter errors in position can lead to errors > 3%. The precision of the delivery system was demonstrated to be within the experimental noise of the detector system of 1.5% (1 SD).
Journal of Applied Clinical Medical Physics | 2007
G. Webster; Carl G Rowbottom; Ranald I Mackay
Intensity‐modulated radiotherapy (IMRT) for complex sites such as tumors of the head and neck requires a level of accuracy in dose calculation beyond that currently used for conformal treatment planning. Recent advances in treatment planning systems have aimed to improve the dose calculation accuracy by improving the modeling of machine characteristics such as interleaf leakage, tongue and groove, and rounded multileaf collimator (MLC) leaf ends. What is uncertain is the extent to which these model parameters improve the agreement between dose calculation and measurements for IMRT treatments. We used Pinnacle version 7.4f (Philips Medical Systems, Andover, MA) to carry out optimization of additional photon‐beam model parameters for both an Elekta Precise (Elekta, Stockholm, Sweden) and a Varian (Varian Medical Systems, Palo Alto, CA) linear accelerator (LINAC). One additional parameter was added to the beam models in turn, and associated models were commissioned to investigate the dosimetric impact of each model parameter on 5 clinical head‐and‐neck IMRT plans. The magnitude and location of differences between the models was determined from gamma analysis of the calculated planar dose maps. A final model that incorporated all of the changes was then commissioned. For the Elekta Precise, the impact of all the changes was determined using a gamma analysis as compared with measured films. Cumulative differences of up to more than 3%/3 mm were observed when dose distributions with and without all of the model changes were compared. Individually, for both LINACs, the addition of modeling for the rounded MLC leaf ends caused the most dramatic change to the calculation of the dose distribution, generating a difference of 3%/3 mm in up to 5% of pixels for the 5 patient plans sampled. The effect of tongue‐and‐groove modeling was more significant for the Varian LINAC (at 1%/1 mm, mean of 25% of pixels as compared with 5% of pixels with the Elekta Precise LINAC). The combined changes to the Elekta model were found to improve agreement with measurement. Current commercially available treatment planning systems offer accuracy sufficient for clinical implementation of head‐and‐neck IMRT. For this treatment site, the ability to accurately model the rounded MLC leaf ends has the greatest affect on the similarity of the calculated dose distribution to measurements. In addition, for the Varian LINAC, modeling of the tongue‐and‐groove effect was also advantageous. PACS numbers: 87.53.‐j, 87.53.Bn, 87.53.Tf
Journal of Applied Clinical Medical Physics | 2008
G. Webster; Mark J. Hardy; Carl G Rowbottom; Ranald I Mackay
The head and neck is a challenging anatomic site for intensity‐modulated radiation therapy (IMRT), requiring thorough testing of planning and treatment delivery systems. Ideally, the phantoms used should be anatomically realistic, have radiologic properties identical to those of the tissues concerned, and allow for the use of a variety of devices to verify dose and dose distribution in any target or normal‐tissue structure. A phantom that approaches the foregoing characteristics has been designed and built; its specific purpose is verification for IMRT treatments in the head‐and‐neck region. This semi‐anatomic phantom, HANK, is constructed of Perspex (Imperial Chemical Industries, London, U.K.) and provides for the insertion of heterogeneities simulating air cavities in a range of fixed positions. Chamber inserts are manufactured to incorporate either a standard thimble ionization chamber (0.125 cm3: PTW, Freiburg, Germany) or a smaller PinPoint chamber (0.015 cm3: PTW), and measurements can be made with either chamber in a range of positions throughout the phantom. Coronal films can also be acquired within the phantom, and additional solid blocks of Perspex allow for transverse films to be acquired within the head region. Initial studies using simple conventional head‐and‐neck plans established the reproducibility of the phantom and the measurement devices to within the setup uncertainty of ±0.5 mm. Subsequent verification of 9 clinical head‐and‐neck IMRT plans demonstrated the efficacy of the phantom in making a range of patient‐specific dose measurements in regions of dosimetric and clinical interest. Agreement between measured values and those predicted by the Pinnacle3 treatment planning system (Philips Medical Systems, Andover, MA) was found to be generally good, with a mean error on the calculated dose to each point of +0.2% (range: −4.3% to +2.2%;n=9) for the primary planning target volume (PTV), −0.1% (range: −1.5% to +2.0%;n=8) for the nodal PTV, and +0.0% (range: −1.8% to +4.3%;n=9) for the spinal cord. The suitability of the phantom for measuring combined dose distributions using radiographic film was also evaluated. The phantom has proved to be a valuable tool in the development and implementation of clinical head‐and‐neck IMRT, allowing for accurate verification of absolute dose and dose distributions in regions of clinical and dosimetric interest. PACS numbers: 87.53.‐j, 87.53.Xd, 87.56.Fc
British Journal of Radiology | 2015
Lynsey J Hamlett; Andrew McPartlin; Edward J Maile; G. Webster; Ric Swindell; Carl G Rowbottom; Ananya Choudhury; Adam H Aitkenhead
OBJECTIVE We investigated possible associations between planned dose-volume parameters and rectal late toxicity in 170 patients having radical prostate cancer radiotherapy. METHODS For each patient, the rectum was outlined from anorectal junction to sigmoid colon, and rectal dose was parametrized using dose-volume (DVH), dose-surface (DSH) and dose-line (DLH) histograms. Generation of DLHs differed from previous studies in that the rectal dose was parametrized without first unwrapping onto 2-dimensional dose-surface maps. Patient-reported outcomes were collected using a validated Later Effects in Normal Tissues Subjective, Objective, Management and Analytic questionnaire. Associations between dose and toxicity were assessed using a one-sided Mann-Whitney U test. RESULTS Associations (p < 0.05) were found between equieffective dose (EQD23) and late toxicity as follows: overall toxicity with DVH and DSH at 13-24 Gy; proctitis with DVH and DSH at 25-36 Gy and with DVH, DSH and DLH at 61-67 Gy; bowel urgency with DVH and DSH at 10-20 Gy. None of these associations met statistical significance following the application of a Bonferroni correction. CONCLUSION Independently confirmed associations between rectal dose and late toxicity remain elusive. Future work to increase the accuracy of the knowledge of the rectal dose, either by accounting for interfraction and intrafraction rectal motion or via stabilization of the rectum during treatment, may be necessary to allow for improved dose-toxicity comparisons. ADVANCES IN KNOWLEDGE This study is the first to use parametrized DLHs to study associations with patient-reported toxicity for prostate radiotherapy showing that it is feasible to model rectal dose mapping in three dimensions.
Lung Cancer | 2011
R.K. Shrimali; G. Webster; L. Lee; N. Bayman; H. Sheikh; J. Stratford; S. Chauhan; Corinne Faivre-Finn
discomfort. 80% of patients received the full course of WBRT, although 11 (15%) patients experienced rapid progression and did not begin WBRT. Treatment with WBRT did not appear to have an obvious effect on quality of life. The average daily dose of dexamethasone throughout the study was 6mg in both arms. Despite the poor prognosis of patients with brain metastases, data completion is excellent, with the majority of patients able to fully complete telephone assessments throughout their time on the study. Conclusions: Patients entering QUARTZ report a wide range of symptoms at baseline, and have various impairments to their quality of life. Further data are required to fully explore the effect on quality of life of treatment with WBRT, and QUARTZ remains a vital clinical trial.