Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabi Hanna is active.

Publication


Featured researches published by Gabi Hanna.


Cancer Research | 2012

Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors.

Ashley Manzoor; Lars H. Lindner; Chelsea D. Landon; Ji-Young Park; Andrew J. Simnick; Matthew R. Dreher; S Das; Gabi Hanna; Won Soon Park; Ashutosh Chilkoti; Gerben A. Koning; Timo L.M. ten Hagen; David Needham; Mark W. Dewhirst

Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumors. The enhanced permeability and retention effect can permit passive accumulation into tumor interstitium. However, suboptimal delivery is achieved with most nanoparticles because of heterogeneities of vascular permeability, which limits nanoparticle penetration. Furthermore, slow drug release limits bioavailability. We developed a fast drug-releasing liposome triggered by local heat that has already shown substantial antitumor efficacy and is in human trials. Here, we show that thermally sensitive liposomes (Dox-TSL) release doxorubicin inside the tumor vasculature. Real-time confocal imaging of doxorubicin delivery to murine tumors in window chambers and histologic analysis of flank tumors illustrates that intravascular drug release increases free drug in the interstitial space. This increases both the time that tumor cells are exposed to maximum drug levels and the drug penetration distance, compared with free drug or traditional pegylated liposomes. These improvements in drug bioavailability establish a new paradigm in drug delivery: rapidly triggered drug release in the tumor bloodstream.


Journal of Controlled Release | 2011

In vivo tumor targeting by a NGR-decorated micelle of a recombinant diblock copolypeptide.

Andrew J. Simnick; Miriam Amiram; Wenge Liu; Gabi Hanna; Mark W. Dewhirst; Christopher D. Kontos; Ashutosh Chilkoti

Antivascular targeting is a promising strategy for tumor therapy. This strategy has the potential to overcome many of the transport barriers associated with targeting tumor cells in solid tumors, because the tumor vasculature is directly accessible to targeting vehicles in systemic circulation. We report a novel nanoscale delivery system consisting of multivalent polymer micelles to target receptors that are preferentially upregulated in the tumor vasculature and perivascular cells, specifically CD13. To this end we utilized amphiphilic block copolymers, composed of a genetically engineered elastin-like polypeptide (ELP) that self-assemble into monodisperse spherical micelles. These polymer micelles were functionalized by incorporating the NGR tripeptide ligand, which targets the CD13 receptor, on their corona. We examined the self-assembly and in vivo tumor targeting by these NGR-functionalized nanoparticles and show that multivalent presentation of NGR by micelle self-assembly selectively targets the tumor vasculature by targeting CD13. Furthermore, we show greater vascular retention and extravascular accumulation of nanoparticles in tumor tissue compared to normal tissue, although the enhancement is modest. These results suggest that enhanced delivery to solid tumors can be achieved by targeting upregulated receptors in the tumor vasculature with multivalent ligand-presenting nanoparticles, but additional work is required to optimize such systems for multivalent targeting.


Nature Protocols | 2011

In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters

Gregory M. Palmer; Andrew N. Fontanella; Siqing Shan; Gabi Hanna; Guoqing Zhang; Cassandra L. Fraser; Mark W. Dewhirst

Optical techniques for functional imaging in mice have a number of key advantages over other common imaging modalities such as magnetic resonance imaging, positron emission tomography or computed tomography, including high resolution, low cost and an extensive library of available contrast agents and reporter genes. A major challenge to such work is the limited penetration depth imposed by tissue turbidity. We describe a window chamber technique by which these limitations can be avoided. This facilitates the study of a wide range of processes, with potential endpoints including longitudinal gene expression, vascular remodeling and angiogenesis, and tumor growth and invasion. We further describe several quantitative imaging and analysis techniques for characterizing in vivo fluorescence properties and functional endpoints, including vascular morphology and oxygenation. The procedure takes ∼2 h to complete, plus up to several weeks for tumor growth and treatment procedures.


Molecular Cancer Therapeutics | 2010

Effect of Pazopanib on Tumor Microenvironment and Liposome Delivery

Tina D. Tailor; Gabi Hanna; Pavel S. Yarmolenko; Matthew R. Dreher; Allison S. Betof; Andrew B. Nixon; Ivan Spasojevic; Mark W. Dewhirst

Pathologic angiogenesis creates an abnormal microenvironment in solid tumors, characterized by elevated interstitial fluid pressure (IFP) and hypoxia. Emerging theories suggest that judicious downregulation of proangiogenic signaling pathways may transiently “normalize” the vascular bed, making it more suitable for drug delivery and radiotherapy. In this work, we investigate the role of pazopanib, a small-molecule inhibitor of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors, on tumor IFP, angiogenesis, hypoxia, and liposomal drug delivery. Nude mice bearing A549 human non–small cell lung cancer xenografts were treated with 100 mg/kg pazopanib (n = 20) or vehicle (n = 20) through oral gavage for 8 days, followed by a one-time intravenous dose of 10 mg/kg Doxil (liposomal doxorubicin). Pazopanib treatment resulted in significant reduction of tumor IFP and decreased vessel density, assessed by CD31 staining. Despite these trends toward normalization, high-performance liquid chromatography revealed no differences in doxorubicin concentration between pazopanib-treated and control tumors, with Doxil penetration from microvessels being significantly reduced in the pazopanib group. Additionally, tumor hypoxia, evaluated by CA-IX immunostaining and confirmed in a second study by EF5 expression (n = 4, 100 mg/kg pazopanib; n = 4, vehicle), was increased in pazopanib-treated tumors. Our results suggest that the classic definition of tumor “normalization” may undermine the crucial role of vessel permeability and oncotic pressure gradients in liposomal drug delivery, and that functional measures of normalization, such as reduced IFP and hypoxia, may not occur in parallel temporal windows. Mol Cancer Ther; 9(6); 1798–808. ©2010 AACR.


Journal of Biomedical Optics | 2010

Optical imaging of tumor hypoxia dynamics

Gregory M. Palmer; Andrew N. Fontanella; Guoqing Zhang; Gabi Hanna; Cassandra L. Fraser; Mark W. Dewhirst

The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent∕phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.


Clinical Cancer Research | 2012

Bevacizumab-Induced Alterations in Vascular Permeability and Drug Delivery: A Novel Approach to Augment Regional Chemotherapy for In-Transit Melanoma

Ryan S. Turley; Andrew N. Fontanella; James Padussis; Hiroaki Toshimitsu; Yoshihiro Tokuhisa; Eugenia H. Cho; Gabi Hanna; Georgia M. Beasley; Christina K. Augustine; Mark W. Dewhirst; Douglas S. Tyler

Purpose: To investigate whether the systemically administered anti-VEGF monoclonal antibody bevacizumab could improve regional chemotherapy treatment of advanced extremity melanoma by enhancing delivery and tumor uptake of regionally infused melphalan (LPAM). Experimental Design: After treatment with systemic bevacizumab or saline, changes in vascular permeability were determined by spectrophotometric analysis of tumors infused with Evans blue dye. Changes in vascular structure and tumor hemoglobin-oxygen saturation HbO2 were determined by intravital microscopy and diffuse reflectance spectroscopy, respectively. Rats bearing the low-VEGF secreting DM738 and the high-VEGF secreting DM443 melanoma xenografts underwent isolated limb infusion (ILI) with melphalan (LPAM) or saline via the femoral vessels. The effect of bevacizumab on terminal drug delivery was determined by immunohistochemical analysis of LPAM-DNA adducts in tumor tissues. Results: Single-dose bevacizumab given three days before ILI with LPAM significantly decreased vascular permeability (50.3% in DM443, P < 0.01 and 35% in DM738, P < 0.01) and interstitial fluid pressure (57% in DM443, P < 0.01 and 50% in DM738, P = 0.01). HbO2 decreased from baseline in mice following treatment with bevacizumab. Systemic bevacizumab significantly enhanced tumor response to ILI with LPAM in two melanoma xenografts, DM443 and DM738, increasing quadrupling time 37% and 113%, respectively (P = 0.03). Immunohistochemical analyses of tumor specimens showed that pretreatment with systemic bevacizumab markedly increased LPAM-DNA adduct formation. Conclusions: Systemic treatment with bevacizumab before regional chemotherapy increases delivery of LPAM to tumor cells and represents a novel way to augment response to regional therapy for advanced extremity melanoma. Clin Cancer Res; 18(12); 3328–39. ©2012 AACR.


Molecular and Cellular Biology | 2014

Cellular migration and invasion uncoupled: Increased migration is not an inexorable consequence of epithelial-to-mesenchymal transition

Daneen Schaeffer; Jason A. Somarelli; Gabi Hanna; Gregory M. Palmer; Mariano A. Garcia-Blanco

ABSTRACT Metastatic dissemination requires carcinoma cells to detach from the primary tumor and invade through the basement membrane. To acquire these characteristics, epithelial tumor cells undergo epithelial-to-mesenchymal transitions (EMT), whereby cells lose polarity and E-cadherin-mediated cell-cell adhesion. Post-EMT cells have also been shown, or assumed, to be more migratory; however, there have been contradictory reports on an immortalized human mammary epithelial cell line (HMLE) that underwent EMT. In the context of carcinoma-associated EMT, it is not yet clear whether the change in migration and invasion must be positively correlated during EMT or whether enhanced migration is a necessary consequence of having undergone EMT. Here, we report that pre-EMT rat prostate cancer (PC) and HMLE cells are more migratory than their post-EMT counterparts. To determine a mechanism for increased epithelial cell migration, gene expression analysis was performed and revealed an increase in epidermal growth factor receptor (EGFR) expression in pre-EMT cells. Indeed, inhibition of EGFR in PC epithelial cells slowed migration. Importantly, while post-EMT PC and HMLE cell lines are less migratory, both remain invasive in vitro and, for PC cells, in vivo. Our study demonstrates that enhanced migration is not a phenotypic requirement of EMT, and migration and invasion can be uncoupled during carcinoma-associated EMT.


Nanoscale | 2014

Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor

Hsiangkuo Yuan; Christy Wilson; Jun Xia; Sarah L. Doyle; Shuqin Li; Andrew M. Fales; Yang Liu; Ema Ozaki; Kelly Mulfaul; Gabi Hanna; Gregory M. Palmer; Lihong V. Wang; Gerald A. Grant; Tuan Vo-Dinh

Plasmonics-active gold nanostars exhibiting strong imaging contrast and efficient photothermal transduction were synthesized for a novel pulsed laser-modulated plasmonics-enhanced brain tumor microvascular permeabilization. We demonstrate a selective, optically modulated delivery of nanoprobes into the tumor parenchyma with minimal off-target distribution.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Automated measurement of blood flow velocity and direction and hemoglobin oxygen saturation in the rat lung using intravital microscopy

Gabi Hanna; Andrew N. Fontanella; Gregory M. Palmer; Siqing Shan; Daniel R. Radiloff; Yulin Zhao; David Irwin; Karyn L. Hamilton; Alina Boico; Claude A. Piantadosi; Gert Blueschke; Mark W. Dewhirst; Timothy J. McMahon; Thies Schroeder

Intravital microscopy of the pulmonary microcirculation in research animals is of great scientific interest for its utility in identifying regional changes in pulmonary microcirculatory blood flow. Although feasibility studies have been reported, the pulmonary window can be further refined into a practical tool for pharmaceutical research and drug development. We have established a method to visualize and quantify dynamic changes in three key features of lung function: microvascular red blood cell velocity, flow direction, and hemoglobin saturation. These physiological parameters were measured in an acute closed-chest pulmonary window, which allows real-time images to be captured by fluorescence and multispectral absorption microscopy; images were subsequently quantified using computerized analysis. We validated the model by quantifying changes in microcirculatory blood flow and hemoglobin saturation in two ways: 1) after changes in inspired oxygen content and 2) after pharmacological reduction of pulmonary blood flow via treatment with the β1 adrenergic receptor blocker metoprolol. This robust and relatively simple system facilitates pulmonary intravital microscopy in laboratory rats for pharmacological and physiological research.


Microcirculation | 2013

Quantitative Mapping of Hemodynamics in the Lung, Brain, and Dorsal Window Chamber‐Grown Tumors Using a Novel, Automated Algorithm

Andrew N. Fontanella; Thies Schroeder; Daryl W. Hochman; Raymond E. Chen; Gabi Hanna; Michael M. Haglund; Timothy W. Secomb; Gregory M. Palmer; Mark W. Dewhirst

Hemodynamic properties of vascular beds are of great interest in a variety of clinical and laboratory settings. However, there presently exists no automated, accurate, technically simple method for generating blood velocity maps of complex microvessel networks.

Collaboration


Dive into the Gabi Hanna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Irwin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge