Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor Balogh is active.

Publication


Featured researches published by Gábor Balogh.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding

Zsolt Török; Pierre Goloubinoff; Ibolya Horváth; Nelly M. Tsvetkova; Attila Glatz; Gábor Balogh; Dmitry A. Los; Elizabeth Vierling; John H. Crowe; László Vígh

The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17− deletion mutant compared with the isogenic wild-type hsp17+ revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a “membrane stabilizing factor” as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.


FEBS Journal | 2005

The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response

Gábor Balogh; Ibolya Horváth; Eniko Nagy; Zsófia Hoyk; Sándor Benko; Olivier Bensaude; László Vígh

The concentrations of two structurally distinct membrane fluidizers, the local anesthetic benzyl alcohol (BA) and heptanol (HE), were used at concentrations so that their addition to K562 cells caused identical increases in the level of plasma membrane fluidity as tested by 1,6‐diphenyl‐1,3,5‐hexatriene (DPH) anisotropy. The level of membrane fluidization induced by the chemical agents on isolated membranes at such concentrations corresponded to the membrane fluidity increase seen during a thermal shift up to 42 °C. The formation of isofluid membrane states in response to the administration of BA or HE resulted in almost identical downshifts in the temperature thresholds of the heat shock response, accompanied by increases in the expression of genes for stress proteins such as heat shock protein (HSP)‐70 at the physiological temperature. Similarly to thermal stress, the exposure of the cells to these membrane fluidizers elicited nearly identical increases of cytosolic Ca2+ concentration in both Ca2+‐containing and Ca2+‐free media and also closely similar extents of increase in mitochondrial hyperpolarization. We obtained no evidence that the activation of heat shock protein expression by membrane fluidizers is induced by a protein‐unfolding signal. We suggest, that the increase of fluidity in specific membrane domains, together with subsequent alterations in key cellular events are converted into signal(s) leading to activation of heat shock genes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line

Enikő Nagy; Zsolt Balogi; Imre Gombos; Malin Åkerfelt; Anders Björkbom; Gábor Balogh; Zsolt Török; Andriy Maslyanko; Anna Fiszer-Kierzkowska; Katarzyna Lisowska; Peter Slotte; Lea Sistonen; Ibolya Horváth; László Vígh

Targeting of the Hsp function in tumor cells is currently being assessed as potential anticancer therapy. An improved understanding of the molecular signals that trigger or attenuate the stress protein response is essential for advances to be made in this field. The present study provides evidence that the membrane fluidizer benzyl alcohol (BA), a documented nondenaturant, acts as a chaperone inducer in B16(F10) melanoma cells. It is demonstrated that this effect relies basically on heat shock transcription factor 1 (HSF1) activation. Under the conditions tested, the BA-induced Hsp response involves the up-regulation of a subset of hsp genes. It is shown that the same level of membrane fluidization (estimated in the core membrane region) attained with the closely analogous phenethyl alcohol (PhA) does not generate a stress protein signal. BA, at a concentration that activates heat shock genes, exerts a profound effect on the melting of raft-like cholesterol-sphingomyelin domains in vitro, whereas PhA, at a concentration equipotent with BA in membrane fluidization, has no such effect. Furthermore, through the in vivo labeling of melanoma cells with a fluorescein labeled probe that inserts into the cholesterol-rich membrane domains [fluorescein ester of polyethylene glycol-derivatized cholesterol (fPEG-Chol)], we found that, similarly to heat stress per se, BA, but not PhA, initiates profound alterations in the plasma membrane microdomain structure. We suggest that, apart from membrane hyperfluidization in the deep hydrophobic region, a distinct reorganization of cholesterol-rich microdomains may also be required for the generation and transmission of stress signals to activate hsp genes.


European Journal of Pharmaceutics and Biopharmaceutics | 2009

Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue

Sándor Horvát; A. Fehér; Hartwig Wolburg; Péter Sipos; Szilvia Veszelka; Andrea E. Tóth; Lóránd Kis; Anita Kurunczi; Gábor Balogh; Levente Kürti; I. Eros; Piroska Szabó-Révész; Mária A. Deli

Intranasal administration of molecules has been investigated as a non-invasive way for delivery of drugs to the brain in the last decade. Circumvention of both the blood-brain barrier and the first-pass elimination by the liver and gastrointestinal tract is considered as the main advantages of this method. Because of the rapid mucociliary clearance in the nasal cavity, bioadhesive formulations are needed for effective targeting. Our goal was to develop a formulation containing sodium hyaluronate, a well-known mucoadhesive molecule, in combination with a non-ionic surfactant to enhance the delivery of hydrophilic compounds to the brain via the olfactory route. Fluorescein isothiocyanate-labeled 4 kDa dextran (FD-4), used as a test molecule, was administered nasally in different formulations to Wistar rats, and detected in brain areas by fluorescent spectrophotometry. Hyaluronan increased the viscosity of the vehicles and slowed down the in vitro release of FD-4. Significantly higher FD-4 transport could be measured in the majority of brain areas examined, including olfactory bulb, frontal and parietal cortex, hippocampus, cerebellum, midbrain and pons, when the vehicle contained hyaluronan in combination with absorption enhancer. The highest concentrations of FD-4 could be detected in the olfactory bulbs, frontal and parietal cortex 4h after nasal administration in the mucoadhesive formulation. Intravenous administration of a hundred times higher dose of FD-4 resulted in a lower brain penetration as compared to nasal formulations. Morphological examination of the olfactory system revealed no toxicity of the vehicles. Hyaluronan, a non-toxic biomolecule used as a mucoadhesive in a nasal formulation, increased the brain penetration of a hydrophilic compound, the size of a peptide, via the nasal route.


PLOS ONE | 2011

Membrane-Lipid Therapy in Operation: The HSP Co-Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts

Imre Gombos; Tim Crul; Stefano Piotto; Burcin Gungor; Zsolt Török; Gábor Balogh; Mária Péter; J. Peter Slotte; Federica Campana; Ana Maria Pilbat; Ákos Hunya; Noémi Tóth; Zsuzsanna Literati-Nagy; László Vígh; Attila Glatz; Mario Brameshuber; Gerhard J. Schütz; Andrea L. Hevener; Mark A. Febbraio; Ibolya Horváth

Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in ‘membrane-lipid therapy’ to combat many various protein-misfolding diseases associated with aging.


Biochimica et Biophysica Acta | 2010

Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line

Gábor Balogh; Mária Péter; Gerhard Liebisch; Ibolya Horváth; Zsolt Török; Enikő Nagy; Andriy Maslyanko; Sándor Benkő; Gerd Schmitz; John L. Harwood; László Vígh

Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A(2) and C). A phospholipase C-diacylglycerol lipase-monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.


Cell Stress & Chaperones | 2014

The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

Philip L. Hooper; Gábor Balogh; Eric Rivas; Kylie Kavanagh; László Vígh

Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.


PLOS ONE | 2011

Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells

Gábor Balogh; Giuseppe Maulucci; Imre Gombos; Ibolya Horváth; Zsolt Török; Mária Péter; Elfrieda Fodor; Tibor Páli; Sándor Benkő; Tiziana Parasassi; Marco De Spirito; John L. Harwood; László Vígh

Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.


Progress in Lipid Research | 2015

Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment

Pablo V. Escribá; Xavier Busquets; Jin-ichi Inokuchi; Gábor Balogh; Zsolt Török; Ibolya Horváth; John L. Harwood; László Vígh

Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein-lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein-lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.


International Journal of Hyperthermia | 2013

Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes

Balint Csoboz; Gábor Balogh; Erzsébet Kusz; Imre Gombos; Mária Péter; Tim Crul; Burcin Gungor; Lajos Haracska; Gordana Bogdanovics; Zsolt Török; Ibolya Horváth; László Vígh

Abstract Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and ‘membrane defects’ most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo- or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the ‘membrane stress’ of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies.

Collaboration


Dive into the Gábor Balogh's collaboration.

Top Co-Authors

Avatar

Ibolya Horváth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

László Vígh

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zsolt Török

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mária Péter

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Attila Glatz

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Laszlo Vigh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Imre Gombos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Eszter Kovács

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge