Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor Czirják is active.

Publication


Featured researches published by Gábor Czirják.


Physiological Reviews | 2010

Molecular Background of Leak K+ Currents: Two-Pore Domain Potassium Channels

Péter Enyedi; Gábor Czirják

Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.


Journal of Biological Chemistry | 2002

Formation of Functional Heterodimers between the TASK-1 and TASK-3 Two-pore Domain Potassium Channel Subunits

Gábor Czirják; Péter Enyedi

The potassium channels in the two-pore domain family are widely expressed and regulate the excitability of neurons and other excitable cells. These channels have been shown to function as dimers, but heteromerization between the various channel subunits has not yet been reported. Here we demonstrate that two members of the TASK subfamily of potassium channels, TASK-1 and TASK-3, can form functional heterodimers when expressed in Xenopus laevis oocytes. To recognize the two TASK channel types, we took advantage of the higher sensitivity of TASK-1 over TASK-3 to physiological pH changes and the discriminating sensitivity of TASK-3 to the cationic dye ruthenium red. These features were clearly observed when the channels were expressed individually. However, when TASK-1 and TASK-3 were expressed together, the resulting current showed intermediate pH sensitivity and ruthenium red insensitivity (characteristic of TASK-1), indicating the formation of TASK-1/TASK-3 heterodimers. Expression of a tandem construct in which TASK-3 and TASK-1 were linked together yielded currents with features very similar to those observed when coexpressing the two channels. The tandem construct also responded to AT1a angiotensin II receptor stimulation with an inhibition that was weaker than the inhibition of homodimeric TASK-1 and greater than that shown by TASK-3. Expression of epitope-tagged channels in mammalian cells showed their primary presence in the plasma membrane consistent with their function in this location. Heteromerization of two-pore domain potassium channels may provide a greater functional diversity and additional means by which they can be regulated in their native tissues.


The Journal of Physiology | 2005

PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels.

Coeli M. Lopes; Tibor Rohacs; Gábor Czirják; Tamas Balla; Péter Enyedi; Diomedes E. Logothetis

Two‐pore (2‐P) domain potassium channels are implicated in the control of the resting membrane potential, hormonal secretion, and the amplitude, frequency and duration of the action potential. These channels are strongly regulated by hormones and neurotransmitters. Little is known, however, about the mechanism underlying their regulation. Here we show that phosphatidylinositol 4,5‐bisphosphate (PIP2) gating underlies several aspects of 2‐P channel regulation. Our results demonstrate that all four 2‐P channels tested, TASK1, TASK3, TREK1 and TRAAK are activated by PIP2. We show that mechanical stimulation may promote PIP2 activation of TRAAK channels. For TREK1, TASK1 and TASK3 channels, PIP2 hydrolysis underlies inhibition by several agonists. The kinetics of inhibition by the PIP2 scavenger polylysine, and the inhibition by the phosphatidylinositol 4‐kinase inhibitor wortmannin correlated with the level of agonist‐induced inhibition. This finding suggests that the strength of channel PIP2 interactions determines the extent of PLC‐induced inhibition. Finally, we show that PIP2 hydrolysis modulates voltage dependence of TREK1 channels and the unrelated voltage‐dependent KCNQ1 channels. Our results suggest that PIP2 is a common gating molecule for K+ channel families despite their distinct structures and physiological properties.


Journal of Biological Chemistry | 2006

Targeting of Calcineurin to an NFAT-like Docking Site Is Required for the Calcium-dependent Activation of the Background K+ Channel, TRESK

Gábor Czirják; Péter Enyedi

The two-pore domain K+ channel, TRESK (TWIK-related spinal cord K+ channel) is activated in response to the calcium signal by the calcium/calmodulin-dependent protein phosphatase, calcineurin. In the present study we report that calcineurin also interacts with TRESK via an NFAT-like docking site, in addition to its enzymatic action. In its intracellular loop, mouse TRESK possesses the amino acid sequence, PQIVID, which is similar to the calcineurin binding consensus motif, PXIXIT (where X denotes any amino acids), necessary for NFAT (nuclear factor of activated T cells) activation and nuclear translocation. Mutations of the PQIVID sequence of TRESK to PQIVIA, PQIVAD, or PQAVAD increasingly deteriorated the calcium-dependent activation in the listed order and correspondingly reduced the benzocaine sensitivity (a property discriminating activated channels from resting ones), when it was measured after the calcium signal in Xenopus oocytes. Microinjection of VIVIT peptide, designed to inhibit the NFAT-calcineurin interaction specifically, also eliminated TRESK activation. The intracellular loop of TRESK, expressed as a GST fusion protein, bound constitutively active calcineurin in vitro. PQAVAD mutation as well as addition of VIVIT peptide to the reaction abrogated this calcineurin binding. Wild type calcineurin was recruited to GST-TRESK-loop in the presence of calcium and calmodulin. These results indicate that the PQIVID sequence is a docking site for calcineurin, and its occupancy is required for the calcium-dependent regulation of TRESK. Immunosuppressive compounds, developed to target the NFAT binding site of calcineurin, are also expected to interfere with TRESK regulation, in addition to their desired effect on NFAT.


The Journal of General Physiology | 2006

The Antibacterial Activity of Human Neutrophils and Eosinophils Requires Proton Channels but Not BK Channels

Jon K. Femling; Vladimir V. Cherny; Deri Morgan; Balázs Rada; A. Paige Davis; Gábor Czirják; Péter Enyedi; Sarah K. England; Jessica G. Moreland; Erzsébet Ligeti; William M. Nauseef; Thomas E. DeCoursey

Electrophysiological events are of central importance during the phagocyte respiratory burst, because NADPH oxidase is electrogenic and voltage sensitive. We investigated the recent suggestion that large-conductance, calcium-activated K+ (BK) channels, rather than proton channels, play an essential role in innate immunity (Ahluwalia, J., A. Tinker, L.H. Clapp, M.R. Duchen, A.Y. Abramov, S. Page, M. Nobles, and A.W. Segal. 2004. Nature. 427:853–858). In PMA-stimulated human neutrophils or eosinophils, we did not detect BK currents, and neither of the BK channel inhibitors iberiotoxin or paxilline nor DPI inhibited any component of outward current. BK inhibitors did not inhibit the killing of bacteria, nor did they affect NADPH oxidase-dependent degradation of bacterial phospholipids by extracellular gIIA-PLA2 or the production of superoxide anion (\documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\mathrm{O}}_{2^{.}}^{-}\end{equation*}\end{document}). Moreover, an antibody against the BK channel did not detect immunoreactive protein in human neutrophils. A required role for voltage-gated proton channels is demonstrated by Zn2+ inhibition of NADPH oxidase activity assessed by H2O2 production, thus validating previous studies showing that Zn2+ inhibited \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\mathrm{O}}_{2^{.}}^{-}\end{equation*}\end{document} production when assessed by cytochrome c reduction. In conclusion, BK channels were not detected in human neutrophils or eosinophils, and BK inhibitors did not impair antimicrobial activity. In contrast, we present additional evidence that voltage-gated proton channels serve the essential role of charge compensation during the respiratory burst.


Journal of Biological Chemistry | 2008

Phosphorylation-dependent Binding of 14-3-3 Proteins Controls TRESK Regulation

Gábor Czirják; Drazsen Vuity; Péter Enyedi

The two-pore domain K+ channel, TRESK (TWIK-related spinal cord K+ channel) is reversibly activated by the calcium/calmodulin-dependent protein phosphatase, calcineurin. In the present study, we report that 14-3-3 proteins directly bind to the intracellular loop of TRESK and control the kinetics of the calcium-dependent regulation of the channel. Coexpression of 14-3-3η with TRESK blocked, whereas the coexpression of a dominant negative form of 14-3-3η accelerated the return of the K+ current to the resting state after the activation mediated by calcineurin in Xenopus oocytes. The direct action of 14-3-3 was spatially restricted to TRESK, since 14-3-3η was also effective, when it was tethered to the channel by a flexible polyglutamine-containing chain. The effect of both the coexpressed and chained 14-3-3 was alleviated by the microinjection of Ser(P)-Raf259 phosphopeptide that competes with TRESK for binding to 14-3-3. The γ and η isoforms of 14-3-3 controlled TRESK regulation, whereas the β, ζ, ϵ, σ, and τ isoforms failed to influence the mechanism significantly. Phosphorylation of serine 264 in mouse TRESK was required for the binding of 14-3-3η. Because 14-3-3 proteins are ubiquitous, they are expected to control the duration of calcineurin-mediated TRESK activation in all the cell types that express the channel, depending on the phosphorylation state of serine 264. This kind of direct control of channel regulation by 14-3-3 is unique within the two-pore domain K+ channel family.


Molecular and Cellular Endocrinology | 2012

TRESK: the lone ranger of two-pore domain potassium channels.

Péter Enyedi; Gabriella Braun; Gábor Czirják

TRESK (TWIK-related spinal cord K(+) channel, KCNK18) belongs to the two-pore domain (K2P) background (leak) potassium channel family. Unlike other K2P channels, TRESK is activated by the calcium signal in heterologous expression systems. The activation is mediated by the calcium/calmodulin-dependent protein phosphatase, calcineurin. TRESK is abundantly expressed in dorsal root and trigeminal ganglia. The active ingredient of Sichuan pepper, sanshool, has been suggested to evoke tingling paresthesia by inhibiting the channel in a mechanoreceptor subpopulation of sensory neurons. Recently, dominant-negative mutation of human TRESK was found to be linked to migraine with aura in a large pedigree. It is hoped that future TRESK agonists may prevent or ameliorate the debilitating symptoms of migraine. It will be interesting to see whether the calcineurin-activated K(+) channel maintains normal excitability in the cerebral cortex thereby arresting cortical spreading depression (CSD), or prevents migraine attack only in the trigeminovascular (TGVS) system.


Journal of Biological Chemistry | 2010

TRESK Background K+ Channel Is Inhibited by Phosphorylation via Two Distinct Pathways

Gábor Czirják; Péter Enyedi

The two-pore domain K+ channel, TRESK (TWIK-related spinal cord K+ channel, KCNK18) is directly regulated by the calcium/calmodulin-dependent phosphatase calcineurin and 14-3-3 adaptor proteins. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3-3 interferes with the return of the current to the resting state after the activation in Xenopus oocytes. In the present study, we report that the phosphorylation of TRESK at two distinct regulatory regions, the 14-3-3 binding site (Ser-264) and the cluster of three adjacent serine residues (Ser-274, Ser-276, and Ser-279), are responsible for channel inhibition. The phosphorylation of Ser-264 by protein kinase A accelerated the return of the current of S276E mutant TRESK to the resting state after the calcineurin-dependent activation. In the presence of 14-3-3, the basal current of the S276E mutant was reduced, and its calcineurin-dependent activation was augmented, suggesting that the direct binding of the adaptor protein to TRESK contributed to the basal inhibition of the channel under resting conditions. Unexpectedly, we found that 14-3-3 impeded the recovery of the current of S264E mutant TRESK to the resting state after the calcineurin-dependent activation, despite of the mutated 14-3-3 binding site. This suggests that 14-3-3 inhibited the kinase phosphorylating the regulatory cluster of Ser-274, Ser-276, and Ser-279, independently of the direct interaction between TRESK and 14-3-3. In conclusion, two distinct inhibitory kinase pathways converge on TRESK, and their effect on the calcineurin-dependent regulation is differentially modulated by the functional availability of 14-3-3.


PLOS ONE | 2011

TRESK background K(+) channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

Gabriella Braun; Balázs Nemcsics; Péter Enyedi; Gábor Czirják

TRESK (TWIK-related spinal cord K+ channel, KCNK18) is a major background K+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279) in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.


Pflügers Archiv: European Journal of Physiology | 2015

Properties, regulation, pharmacology, and functions of the K2P channel, TRESK

Péter Enyedi; Gábor Czirják

TWIK-related spinal cord K+ channel (TRESK) is the gene product of KCNK18, the last discovered leak potassium K2P channel gene. Under resting conditions, TRESK is constitutively phosphorylated at two regulatory regions. Protein kinase A (PKA) and microtubule affinity-regulating (MARK) kinases can be applied in experiments to phosphorylate these sites of TRESK expressed in Xenopus oocytes, respectively. Upon generation of a calcium signal, TRESK is dephosphorylated and thereby activated by calcineurin. In this process, the binding of calcineurin to the channel by non-catalytic interacting sites is essential. The phosphorylation/dephosphorylation regulatory process is modified by 14-3-3 proteins. Human, but not murine TRESK is also activated by protein kinase C. TRESK is expressed most abundantly in sensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia, and the channel modifies certain forms of nociceptive afferentation. In a large pedigree, a dominant negative mutant TRESK allele was found to co-segregate perfectly with migraine phenotype. While this genetic defect may be responsible only for a very small fraction of migraine cases, specific TRESK activation is expected to exert beneficial effect in common forms of the disease.

Collaboration


Dive into the Gábor Czirják's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Attila Patócs

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge