Gábor Drótos
Eötvös Loránd University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gábor Drótos.
Journal of Climate | 2015
Gábor Drótos; Tamas Bodai; Tamás Tél
AbstractThe authors argue that the concept of snapshot attractors and of their natural probability distributions are the only available tools by means of which mathematically sound statements can be made about averages, variances, etc., for a given time instant in a changing climate. A basic advantage of the snapshot approach, which relies on the use of an ensemble, is that the natural distribution and thus any statistics based on it are independent of the particular ensemble used, provided it is initiated in the past earlier than a convergence time. To illustrate these concepts, a tutorial presentation is given within the framework of a low-order model in which the temperature contrast parameter over a hemisphere decreases linearly in time. Furthermore, the averages and variances obtained from the snapshot attractor approach are demonstrated to strongly differ from the traditional 30-yr temporal averages and variances taken along single realizations. The authors also claim that internal variability can b...
Journal of Climate | 2016
Mátyás Herein; János Márfy; Gábor Drótos; Tamás Tél
AbstractA time series resulting from a single initial condition is shown to be insufficient for quantifying the internal variability in a climate model, and thus one is unable to make meaningful climate projections based on it. The authors argue that the natural distribution, obtained from an ensemble of trajectories differing solely in their initial conditions, of the snapshot attractor corresponding to a particular forcing scenario should be determined in order to quantify internal variability and to characterize any instantaneous state of the system in the future. Furthermore, as a simple measure of internal variability of any particular variable of the model, the authors suggest using its instantaneous ensemble standard deviation. These points are illustrated with the intermediate-complexity climate model Planet Simulator forced by a CO2 scenario, with a 40-member ensemble. In particular, the leveling off of the time dependence of any ensemble average is shown to provide a much clearer indication of r...
Scientific Reports | 2017
Mátyás Herein; Gábor Drótos; Tímea Haszpra; János Márfy; Tamás Tél
Teleconnections are striking features of the Earth climate system which appear as statistically correlated climate-related patterns between remote geographical regions of the globe. In a changing climate, however, the strength of teleconnections might change, and an appropriate characterization of these correlations and their change (more appropriate than detrending the time series) is lacking in the literature. Here we present a novel approach, based on the theory of snapshot attractors, corresponding in our context to studying parallel climate realizations. Imagining an ensemble of parallel Earth systems, instead of the single one observed (i.e., the real Earth), the ensemble, after some time, characterizes the appropriate probabilities of all options permitted by the climate dynamics, reflecting the internal variability of the climate. We claim that the relevant quantities for characterizing teleconnections in a changing climate are correlation coefficients taken over the temporally evolving ensemble in any time instant. As a particular example, we consider the teleconnections of the North Atlantic Oscillation (NAO). In a numerical climate model, we demonstrate that this approach provides the only statistically correct characterization, in contrast to commonly used temporal correlations evaluated along single detrended time series. The teleconnections of the NAO are found to survive the climate change, but their strength might be time-dependent.
Physical Review E | 2016
Gábor Drótos; Tamas Bodai; Tamás Tél
In nonautonomous dynamical systems, like in climate dynamics, an ensemble of trajectories initiated in the remote past defines a unique probability distribution, the natural measure of a snapshot attractor, for any instant of time, but this distribution typically changes in time. In cases with an aperiodic driving, temporal averages taken along a single trajectory would differ from the corresponding ensemble averages even in the infinite-time limit: ergodicity does not hold. It is worth considering this difference, which we call the nonergodic mismatch, by taking time windows of finite length for temporal averaging. We point out that the probability distribution of the nonergodic mismatch is qualitatively different in ergodic and nonergodic cases: its average is zero and typically nonzero, respectively. A main conclusion is that the difference of the average from zero, which we call the bias, is a useful measure of nonergodicity, for any window length. In contrast, the standard deviation of the nonergodic mismatch, which characterizes the spread between different realizations, exhibits a power-law decrease with increasing window length in both ergodic and nonergodic cases, and this implies that temporal and ensemble averages differ in dynamical systems with finite window lengths. It is the average modulus of the nonergodic mismatch, which we call the ergodicity deficit, that represents the expected deviation from fulfilling the equality of temporal and ensemble averages. As an important finding, we demonstrate that the ergodicity deficit cannot be reduced arbitrarily in nonergodic systems. We illustrate via a conceptual climate model that the nonergodic framework may be useful in Earth system dynamics, within which we propose the measure of nonergodicity, i.e., the bias, as an order-parameter-like quantifier of climate change.
Journal of the Atmospheric Sciences | 2015
Gábor Drótos; Tamás Tél
AbstractThe dynamics of modulated point vortex pairs is investigated on a rotating sphere, where modulation is chosen to reflect the conservation of angular momentum (potential vorticity). In this setting the authors point out a qualitative difference between the full spherical dynamics and the one obtained in a β-plane approximation. In particular, dipole trajectories starting at the same location evolve to completely different directions under these two treatments, despite the fact that the deviations from the initial latitude remain small. This is a strong indication for the mathematical inconsistency of the traditional β-plane approximation. At the same time, a consistently linearized set of equations of motion leads to trajectories agreeing with those obtained under the full spherical treatment. The β-plane advection patterns due to chaotic advection in the velocity field of finite-sized vortex pairs are also found to considerably deviate from those of the full spherical treatment, and quantities cha...
European Physical Journal-special Topics | 2017
Gábor Drótos; Tamas Bodai; Tamás Tél
Physical Review E | 2014
Gábor Drótos; Francisco González Montoya; C. Jung; Tamás Tél
Physical Review E | 2013
Gábor Drótos; Tamás Tél; Gergely Kovács
Physical Review E | 2012
Gábor Drótos; C. Jung; Tamás Tél
Physical Review E | 2011
Gábor Drótos; Tamás Tél