Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabor Forgacs is active.

Publication


Featured researches published by Gabor Forgacs.


Biomaterials | 2009

Scaffold-free vascular tissue engineering using bioprinting

Cyrille Norotte; Francois S. Marga; Laura E. Niklason; Gabor Forgacs

Current limitations of exogenous scaffolds or extracellular matrix based materials have underlined the need for alternative tissue-engineering solutions. Scaffolds may elicit adverse host responses and interfere with direct cell-cell interaction, as well as assembly and alignment of cell-produced ECM. Thus, fabrication techniques for production of scaffold-free engineered tissue constructs have recently emerged. Here we report on a fully biological self-assembly approach, which we implement through a rapid prototyping bioprinting method for scaffold-free small diameter vascular reconstruction. Various vascular cell types, including smooth muscle cells and fibroblasts, were aggregated into discrete units, either multicellular spheroids or cylinders of controllable diameter (300-500 microm). These were printed layer-by-layer concomitantly with agarose rods, used here as a molding template. The post-printing fusion of the discrete units resulted in single- and double-layered small diameter vascular tubes (OD ranging from 0.9 to 2.5mm). A unique aspect of the method is the ability to engineer vessels of distinct shapes and hierarchical trees that combine tubes of distinct diameters. The technique is quick and easily scalable.


Journal of Cellular Biochemistry | 2007

Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues

Russell A. Norris; Brook Damon; Vladimir Mironov; Vladimir Kasyanov; Anand Ramamurthi; Ricardo A. Moreno-Rodriguez; Thomas C. Trusk; Jay D. Potts; Richard L. Goodwin; Jeffrey M. Davis; Stanley Hoffman; Xuejun Wen; Yukiko Sugi; Christine B. Kern; Corey H. Mjaatvedt; Debi Turner; Toru Oka; Simon J. Conway; Jeffery D. Molkentin; Gabor Forgacs; Roger R. Markwald

Periostin is predominantly expressed in collagen‐rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross‐linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues. J. Cell. Biochem. 101: 695–711, 2007.


Biofabrication | 2010

Tissue engineering by self-assembly and bio-printing of living cells

Karoly Jakab; Cyrille Norotte; Francoise Marga; Keith Murphy; Gordana Vunjak-Novakovic; Gabor Forgacs

Biofabrication of living structures with desired topology and functionality requires the interdisciplinary effort of practitioners of the physical, life and engineering sciences. Such efforts are being undertaken in many laboratories around the world. Numerous approaches are pursued, such as those based on the use of natural or artificial scaffolds, decellularized cadaveric extracellular matrices and, most lately, bioprinting. To be successful in this endeavor, it is crucial to provide in vitro micro-environmental clues for the cells resembling those in the organism. Therefore, scaffolds, populated with differentiated cells or stem cells, of increasing complexity and sophistication are being fabricated. However, no matter how sophisticated scaffolds are, they can cause problems stemming from their degradation, eliciting immunogenic reactions and other a priori unforeseen complications. It is also being realized that ultimately the best approach might be to rely on the self-assembly and self-organizing properties of cells and tissues and the innate regenerative capability of the organism itself, not just simply prepare tissue and organ structures in vitro followed by their implantation. Here we briefly review the different strategies for the fabrication of three-dimensional biological structures, in particular bioprinting. We detail a fully biological, scaffoldless, print-based engineering approach that uses self-assembling multicellular units as bio-ink particles and employs early developmental morphogenetic principles, such as cell sorting and tissue fusion.


Tissue Engineering Part A | 2008

Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures

Karoly Jakab; Cyrille Norotte; Brook Damon; Francoise Marga; Adrian Neagu; Cynthia L. Besch-Williford; Anatoly Kachurin; Kenneth H. Church; Hyoungshin Park; Vladimir Mironov; Roger R. Markwald; Gordana Vunjak-Novakovic; Gabor Forgacs

Understanding the principles of biological self-assembly is indispensable for developing efficient strategies to build living tissues and organs. We exploit the self-organizing capacity of cells and tissues to construct functional living structures of prescribed shape. In our technology, multicellular spheroids (bio-ink particles) are placed into biocompatible environment (bio-paper) by the use of a three-dimensional delivery device (bio-printer). Our approach mimics early morphogenesis and is based on the realization that the genetic control of developmental patterning through self-assembly involves physical mechanisms. Three-dimensional tissue structures are formed through the postprinting fusion of the bio-ink particles, in analogy with early structure-forming processes in the embryo that utilize the apparent liquid-like behavior of tissues composed of motile and adhesive cells. We modeled the process of self-assembly by fusion of bio-ink particles, and employed this novel technology to print extended cellular structures of various shapes. Functionality was tested on cardiac constructs built from embryonic cardiac and endothelial cells. The postprinting self-assembly of bio-ink particles resulted in synchronously beating solid tissue blocks, showing signs of early vascularization, with the endothelial cells organized into vessel-like conduits.


Biofabrication | 2012

Toward engineering functional organ modules by additive manufacturing.

Francoise Marga; Karoly Jakab; Chirag Khatiwala; Benjamin Shepherd; Scott Dorfman; Bradley A. Hubbard; Stephen H. Colbert; Gabor Forgacs

Tissue engineering is emerging as a possible alternative to methods aimed at alleviating the growing demand for replacement tissues and organs. A major pillar of most tissue engineering approaches is the scaffold, a biocompatible network of synthetic or natural polymers, which serves as an extracellular matrix mimic for cells. When the scaffold is seeded with cells it is supposed to provide the appropriate biomechanical and biochemical conditions for cell proliferation and eventual tissue formation. Numerous approaches have been used to fabricate scaffolds with ever-growing complexity. Recently, novel approaches have been pursued that do not rely on artificial scaffolds. The most promising ones utilize matrices of decellularized organs or methods based on multicellular self-assembly, such as sheet-based and bioprinting-based technologies. We briefly overview some of the scaffold-free approaches and detail one that employs biological self-assembly and bioprinting. We describe the technology and its specific applications to engineer vascular and nerve grafts.


Bioinformatics | 2004

CompuCell, a multi-model framework for simulation of morphogenesis

Jesús A. Izaguirre; Rajiv Chaturvedi; Chengbang Huang; Trevor Cickovski; J. Coffland; Gilberto L. Thomas; Gabor Forgacs; Mark S. Alber; G. Hentschel; Stuart A. Newman; James A. Glazier

MOTIVATION CompuCell is a multi-model software framework for simulation of the development of multicellular organisms known as morphogenesis. It models the interaction of the gene regulatory network with generic cellular mechanisms, such as cell adhesion, division, haptotaxis and chemotaxis. A combination of a state automaton with stochastic local rules and a set of differential equations, including subcellular ordinary differential equations and extracellular reaction-diffusion partial differential equations, model gene regulation. This automaton in turn controls the differentiation of the cells, and cell-cell and cell-extracellular matrix interactions that give rise to cell rearrangements and pattern formation, e.g. mesenchymal condensation. The cellular Potts model, a stochastic model that accurately reproduces cell movement and rearrangement, models cell dynamics. All these models couple in a controllable way, resulting in a powerful and flexible computational environment for morphogenesis, which allows for simultaneous incorporation of growth and spatial patterning. RESULTS We use CompuCell to simulate the formation of the skeletal architecture in the avian limb bud. AVAILABILITY Binaries and source code for Microsoft Windows, Linux and Solaris are available for download from http://sourceforge.net/projects/compucell/


Biofabrication | 2016

Biofabrication: reappraising the definition of an evolving field

Jürgen Groll; Thomas Boland; Torsten Blunk; Jason A. Burdick; Dong Woo Cho; Paul D. Dalton; Brian Derby; Gabor Forgacs; Qing Li; Vladimir Mironov; Lorenzo Moroni; Makoto Nakamura; Wenmiao Shu; Shoji Takeuchi; Giovanni Vozzi; Tim B. F. Woodfield; Tao Xu; James J. Yoo; Jos Malda

Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in terminology. This article aims at clarifying the position of Biofabrication as a research field with a special focus on its relation to and application for Tissue Engineering and Regenerative Medicine. Within this context, we propose a refined working definition of Biofabrication, including Bioprinting and Bioassembly as complementary strategies within Biofabrication.


Journal of Cell Science | 2007

The effect of cellular cholesterol on membrane-cytoskeleton adhesion.

Mingzhai Sun; Nathan Northup; Francoise Marga; Tamás Huber; Fitzroy J. Byfield; Irena Levitan; Gabor Forgacs

Whereas recent studies suggest that cholesterol plays important role in the regulation of membrane proteins, its effect on the interaction of the cell membrane with the underlying cytoskeleton is not well understood. Here, we investigated this by measuring the forces needed to extract nanotubes (tethers) from the plasma membrane, using atomic force microscopy. The magnitude of these forces provided a direct measure of cell stiffness, cell membrane effective surface viscosity and association with the underlying cytoskeleton. Furthermore, we measured the lateral diffusion constant of a lipid analog DiIC12, using fluorescence recovery after photobleaching, which offers additional information on the organization of the membrane. We found that cholesterol depletion significantly increased the adhesion energy between the membrane and the cytoskeleton and decreased the membrane diffusion constant. An increase in cellular cholesterol to a level higher than that in control cells led to a decrease in the adhesion energy and the membrane surface viscosity. Disassembly of the actin network abrogated all the observed effects, suggesting that cholesterol affects the mechanical properties of a cell through the underlying cytoskeleton. The results of these quantitative studies may help to better understand the biomechanical processes accompanying the development of atherosclerosis.


Review of Scientific Instruments | 2003

Magnetic tweezers for intracellular applications

Basarab Gabriel Hosu; Karoly Jakab; P. Bánki; Ferenc Toth; Gabor Forgacs

We have designed and constructed a versatile magnetic tweezer primarily for intracellular investigations. The micromanipulator uses only two coils to simultaneously magnetize to saturation micron-size superparamagnetic particles and generate high magnitude constant field gradients over cellular dimensions. The apparatus resembles a miniaturized Faraday balance, an industrial device used to measure magnetic susceptibility. The device operates in both continuous and pulse modes. Due to its compact size, the tweezers can conveniently be mounted on the stage of an inverted microscope and used for intracellular manipulations. A built-in temperature control unit maintains the sample at physiological temperatures. The operation of the tweezers was tested by moving 1.28 μm diameter magnetic beads inside macrophages with forces near 500 pN.


Journal of Materials Chemistry | 2007

Bioprinting living structures

Vladimir Mironov; Glenn D. Prestwich; Gabor Forgacs

Present efforts in tissue engineering are aimed at building living structures by employing the self-organizing properties of cells and tissues and automated technologies. One such technology is bioprinting that utilizes three-dimensional delivery devices for the rapid and accurate placement of biological materials into biocompatible environments, where post-printing self-assembly takes place. This Application article summarizes the scientific basis of this approach and some of the recent developments.

Collaboration


Dive into the Gabor Forgacs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger R. Markwald

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge