Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor J. Szebeni is active.

Publication


Featured researches published by Gábor J. Szebeni.


Immunology Letters | 2010

Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1.

Ferenc Kovács-Sólyom; Andrea Blaskó; Roberta Fajka-Boja; Róbert Katona; Lea Végh; Julianna Novák; Gábor J. Szebeni; László Krenács; Ferenc Uher; Vilmos Tubak; Robert Kiss; Éva Monostori

Galectin-1 (Gal-1) has been implicated in tumor progression partly via the induction of T-cell apoptosis. However the mechanism of Gal-1 induced T-cell death was mostly studied using recombinant, soluble Gal-1 producing controversial results. To explore the true mechanism of Gal-1 and hence tumor cell-induced T-cell death, we applied co-cultures of tumor cells and T-cells thus avoiding artificial circumstances generated using recombinant protein. T-cells died when co-cultured with Gal-1-expressing but survived with Gal-1 non-expressing tumor cells. Removing tumor cell surface Gal-1 or knocking down Gal-1 expression resulted in diminution of T-cell apoptosis. Gal-1 transgenic or soluble Gal-1 treated HeLa cells became cytotoxic. Stimulation of apoptosis required interaction between the tumor and T-cells, presence of p56lck and ZAP70, decrease of mitochondrial membrane potential and caspase activation. Hence tumor cell-derived Gal-1 might efficiently contribute to tumor self-defense. Moreover this system resolves the discrepancies obtained using recombinant Gal-1 in T-cell apoptosis studies.


Cellular and Molecular Life Sciences | 2008

Co-localization of galectin-1 with GM1 ganglioside in the course of its clathrin- and raft-dependent endocytosis

Roberta Fajka-Boja; Andrea Blaskó; F. Kovács-Sólyom; Gábor J. Szebeni; Gábor K. Tóth; Éva Monostori

Abstract.Mammalian galectin-1 (Gal-1), a β-galactoside-binding lectin has a prominent role in regulating cell adhesion, cell growth and immune responses. Downregulation of these biological functions may occur via internalization of Gal-1. In the present study we have investigated the mechanism and possible mediator(s) of Gal-1 endocytosis. We show that internalization occurs at a temperature higher than 22 °C in an energy dependent fashion. After one hour incubation Gal-1 localizes in the Golgi system within the cells, and then disappears without accumulation in degradation compartments, such as lysosomes. Based on their strong intracellular co-localization, two glycoconjugates, GM1 ganglioside and CD7 are implicated in the sorting of internalized Gal-1 into Golgi. Other known Gal-1 binding glycoproteins on T cells (CD2, CD3, CD43 and CD45) do not cointernalize with the lectin. Internalization of Gal-1 depends on its lectin activity and follows dual pathways involving clathrin-coated vesicles and raft-dependent endocytosis.


Mediators of Inflammation | 2017

Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters

Gábor J. Szebeni; Csaba Vizler; Klára Kitajka; László G. Puskás

One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays.


PLOS ONE | 2012

Identification of galectin-1 as a critical factor in function of mouse mesenchymal stromal cell-mediated tumor promotion.

Gábor J. Szebeni; Éva Kriston-Pál; Péter Blazsó; Róbert Katona; Julianna Novák; Enikő Szabó; Ágnes Czibula; Roberta Fajka-Boja; Beáta Hegyi; Ferenc Uher; László Krenács; Gabriella Joo; Éva Monostori

Bone marrow derived mesenchymal stromal cells (MSCs) have recently been implicated as one source of the tumor-associated stroma, which plays essential role in regulating tumor progression. In spite of the intensive research, the individual factors in MSCs controlling tumor progression have not been adequately defined. In the present study we have examined the role of galectin-1 (Gal-1), a protein highly expressed in tumors with poor prognosis, in MSCs in the course of tumor development. Co-transplantation of wild type MSCs with 4T1 mouse breast carcinoma cells enhances the incidence of palpable tumors, growth, vascularization and metastasis. It also reduces survival compared to animals treated with tumor cells alone or in combination with Gal-1 knockout MSCs. In vitro studies show that the absence of Gal-1 in MSCs does not affect the number of migrating MSCs toward the tumor cells, which is supported by the in vivo migration of intravenously injected MSCs into the tumor. Moreover, differentiation of endothelial cells into blood vessel-like structures strongly depends on the expression of Gal-1 in MSCs. Vital role of Gal-1 in MSCs has been further verified in Gal-1 knockout mice. By administering B16F10 melanoma cells into Gal-1 deficient animals, tumor growth is highly reduced compared to wild type animals. Nevertheless, co-injection of wild type but not Gal-1 deficient MSCs results in dramatic tumor growth and development. These results confirm that galectin-1 is one of the critical factors in MSCs regulating tumor progression.


BioMed Research International | 2015

Curcumin and Its Analogue Induce Apoptosis in Leukemia Cells and Have Additive Effects with Bortezomib in Cellular and Xenograft Models

Lajos Nagy; Liliána Z. Fehér; Gábor J. Szebeni; Márió Gyuris; Péter Sipos; Róbert Alföldi; Béla Ózsvári; László Hackler; Anita Balázs; Péter Batár; Iván Kanizsai; László G. Puskás

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Biochimica et Biophysica Acta | 2015

Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells

Otilia Antal; Mária Péter; László Hackler; Imola Mán; Gábor J. Szebeni; Ferhan Ayaydin; Katalin Hideghéty; László Vígh; Klára Kitajka; Gábor Balogh; László G. Puskás

Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.


International Journal of Molecular Sciences | 2017

Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells

Gábor J. Szebeni; Árpád Balázs; Ildikó Madarász; Gábor Pócz; Ferhan Ayaydin; Iván Kanizsai; Roberta Fajka-Boja; Róbert Alföldi; Laszlo Hackler; László G. Puskás

Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.


Molecular Cancer Therapeutics | 2016

Novel Anti-CRR9/CLPTM1L antibodies with antitumorigenic activity inhibit cell surface accumulation, PI3K interaction, and survival signaling

László G. Puskás; Imola Mán; Gábor J. Szebeni; László Tiszlavicz; Susan Tsai; Michael A. James

We and others have recently shown cisplatin resistance-related protein 9 (CRR9)/Cleft Lip and Palate Transmembrane 1-Like (CLPTM1L) to affect survival and proliferation in lung and pancreatic tumor cells. Our research has indicated that CLPTM1L affects multiple survival signaling pathways in tumor cells under oncogenic, genotoxic, and microenvironmental stress. We have confirmed the association of CLPTM1L with pancreatic cancer by demonstrating overexpression of CLPTM1L in pancreatic tumors and poor survival in patients with high tumor expression of CLPTM1L. Predicting a transmembrane structure, we determined that CLPTM1L could be targeted at the plasma membrane. Herein, we describe the development of mAbs targeting CLPTM1L. Lead antibodies inhibited surface accumulation of CLPTM1L, Akt phosphorylation, anchorage-independent growth, and chemotherapeutic resistance in lung and pancreatic tumor cells. Gemcitabine promoted a physical interaction between CLPTM1L and p110α in pancreatic tumor cells, which was inhibited by anti-CLPTM1L. In vivo treatment with anti-CLPTM1L robustly inhibited the growth of both lung and pancreatic adenocarcinoma xenografts. The efficacy of anti-CLPTM1L correlated with specific epitopes representing important targets in human cancers, particularly those driven by KRas, for which effective targeted therapies have been elusive. This study is the first to report cell-surface exposure of the tumor survival protein CLPTM1L and inhibition of the function of surface CLPTM1L with novel, systematically developed inhibitory mAbs establishing proof of concept of clinically practical agents inhibiting this compelling new tumor survival target in cancer. Mol Cancer Ther; 15(5); 985–97. ©2016 AACR.


International Journal of Molecular Sciences | 2016

Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.

Gábor J. Szebeni; Csaba Vizler; Lajos Nagy; Klára Kitajka; László G. Puskás

Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.


Cytotherapy | 2016

Galectin-1 is a local but not systemic immunomodulatory factor in mesenchymal stromal cells

Roberta Fajka-Boja; Veronika S. Urbán; Gábor J. Szebeni; Ágnes Czibula; Andrea Blaskó; Éva Kriston-Pál; Ildikó Makra; Ákos Hornung; Enikő Szabó; Ferenc Uher; Nandor Gabor Than; Éva Monostori

BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have powerful immunosuppressive activity. This function of MSCs is attributed to plethora of the expressed immunosuppressive factors, such as galectin-1 (Gal-1), a pleiotropic lectin with robust anti-inflammatory effect. Nevertheless, whether Gal-1 renders or contributes to the immunosuppressive effect of MSCs has not been clearly established. Therefore, this question was the focus of a complex study. METHODS MSCs were isolated from bone marrows of wild-type and Gal-1 knockout mice and their in vitro anti-proliferative and apoptosis-inducing effects on activated T cells were examined. The in vivo immunosuppressive activity was tested in murine models of type I diabetes and delayed-type hypersensitivity. RESULTS Both Gal-1-expressing and -deficient MSCs inhibited T-cell proliferation. Inhibition of T-cell proliferation by MSCs was mediated by nitric oxide but not PD-L1 or Gal-1. In contrast, MSC-derived Gal-1 triggered apoptosis in activated T cells that were directly coupled to MSCs, representing a low proportion of the T-cell population. Furthermore, absence of Gal-1 in MSCs did not affect their in vivo immunosuppressive effect. CONCLUSIONS These results serve as evidence that Gal-1 does not play a role in the systemic immunosuppressive effect of MSCs. However, a local contribution of Gal-1 to modulation of T-cell response by direct cell-to-cell interaction cannot be excluded. Notably, this study serves a good model to understand how the specificity of a pleiotropic protein depends on the type and localization of the producing effector cell and its target.

Collaboration


Dive into the Gábor J. Szebeni's collaboration.

Top Co-Authors

Avatar

László G. Puskás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Roberta Fajka-Boja

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Éva Monostori

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Blaskó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klára Kitajka

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge