Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor Mező is active.

Publication


Featured researches published by Gábor Mező.


Expert Opinion on Drug Delivery | 2010

Receptor-mediated tumor targeting based on peptide hormones

Gábor Mező; Marilena Manea

Importance of the field: Tumor targeting with peptides is based on the discovery that receptors for many regulatory peptides are overexpressed in tumor cells, compared with their expression in normal tissues. Consequently, these peptides and their analogues can be used as carriers/targeting moieties for the preparation of diagnostic and therapeutic agents that have increased selectivity and decreased peripheral toxicity. Areas covered in this review: Here an overview is given of the most relevant gonadotropin-releasing hormone (GnRH) and somatostatin derivatives, as well as of their applications in cancer diagnosis and therapy. For this purpose, recently published data in these areas (mostly articles published from 2000 to 2009) were reviewed. What the reader will gain: In contrast to other regulatory peptides that stimulate the tumor growth, GnRH and somatostatin derivatives have inhibitory effect; therefore, they were used primarily for the preparation of various conjugates to be used in targeted chemotherapy, targeted radiotherapy, photodynamic therapy, boron neutron capture therapy and cancer diagnosis. Some of these conjugates have already found clinical applications, whereas others are now in preclinical and clinical trials. Take home message: Tumor targeting with hormone peptides provides a basis for the development of new diagnostic and therapeutic approaches for cancer.


Biophysical Chemistry | 2011

Syntheses and DNA binding of new cationic porphyrin–tetrapeptide conjugates

Gábor Mező; Levente Herényi; Jan Habdas; Zsuzsa Majer; Beata Myśliwa-Kurdziel; Katalin Tóth; Gabriella Csík

Recently cationic porphyrin-peptide conjugates were synthesized to enhance the cellular uptake of porphyrins or deliver the peptide moiety to the close vicinity of nucleic acids. DNA binding of such compounds was not systematically studied yet. We synthesized two new porphyrin-tetrapeptide conjugates which can be considered as a typical monomer unit corresponding to the branches of porphyrin-polymeric branched chain polypeptide conjugates. Tetra-peptides were linked to the tri-cationic meso-tri(4-N-methylpyridyl)-mono-(4-carboxyphenyl)porphyrin and bi-cationic meso-5,10-bis(4-N-methylpyridyl)-15,20-di-(4-carboxyphenyl)porphyrin. DNA binding of porphyrin derivatives, and their peptide conjugates was investigated with comprehensive spectroscopic methods. Titration of porphyrin conjugates with DNA showed changes in Soret bands with bathocromic shifts and hypochromicities. Decomposition of absorption spectra suggested the formation of two populations of bound porphyrins. Evidence provided by the decomposition of absorption spectra, fluorescence decay components, fluorescence energy transfer and induced CD signals reveals that peptide conjugates of di- and tricationic porphyrins bind to DNA by two distinct binding modes which can be identified as intercalation and external binding. Tri-cationic structure and elimination of negative charges in the peptide conjugates are preferable for the binding. Our findings provide essential information for the design of DNA-targeted porphyrin-peptide conjugates.


Journal of Controlled Release | 2011

Anthracycline-GnRH derivative bioconjugates with different linkages: Synthesis, in vitro drug release and cytostatic effect

Pascal Schlage; Gábor Mező; Erika Orbán; Szilvia Bősze; Marilena Manea

To increase the selectivity and consequently to minimize the side effects of chemotherapeutic agents, receptor mediated tumor targeting approaches have been developed. In the present work, various anthracycline-GnRH derivative bioconjugates were synthesized with the aim of investigating the influence of (i) different anthracycline anticancer drugs, (ii) different linkages between the targeting moiety and the anticancer drug, and (iii) different targeting moieties (e.g., GnRH-III and [D-Lys⁶]-GnRH-I) on their in vitro drug release and cytostatic effect. The anthracyclines, daunorubicin or doxorubicin, were attached to the ε-amino group of Lys of GnRH-III or [D-Lys⁶]-GnRH-I through oxime, hydrazone or ester bonds. In another bioconjugate, a self-immolative p-aminobenzyloxycarbonyl spacer was used to link daunorubicin to GnRH-III. The in vitro degradation of the bioconjugates was investigated in the presence of rat liver lysosomal homogenate and cathepsin B. The cellular uptake of the compounds was evaluated by flow cytometry and their in vitro cytostatic effect was determined by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The results indicate that on the tested cancer cell lines there is no significant difference in the cellular uptake and in vitro cytostatic effect of bioconjugates containing GnRH-III or [D-Lys⁶]-GnRH-I as a targeting moiety. The bioconjugates containing ester bond, hydrazone bond and the self-immolative spacer exert the highest cytostatic effect, followed by oxime bond-linked compounds.


Bioconjugate Chemistry | 2011

Enhanced enzymatic stability and antitumor activity of daunorubicin-GnRH-III bioconjugates modified in position 4.

Marilena Manea; Ulrike Leurs; Erika Orbán; Zsuzsa Baranyai; Peter Öhlschläger; Andreas Marquardt; Ákos Schulcz; Miguel Tejeda; Bence Kapuvári; József Tóvári; Gábor Mező

Here, we report on the synthesis, enzymatic stability, and antitumor activity of novel bioconjugates containing the chemotherapeutic agent daunorubicin attached through an oxime bond to various gonadotropin-releasing hormone-III (GnRH-III) derivatives. In order to increase the enzymatic stability of the bioconjugates (in particular against chymotrypsin), (4)Ser was replaced by N-Me-Ser or Lys(Ac). A compound in which (4)Lys was not acetylated was also prepared, with the aim of investigating the influence of the free ε-amino group on the biochemical properties. The in vitro cytostatic effect of the bioconjugates was determined on MCF-7 human breast, HT-29 human colon, and LNCaP human prostate cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their stability/degradation (1) in human serum, (2) in the presence of rat liver lysosomal homogenate, and (3) in the presence of digestive enzymes (trypsin, chymotrypsin, and pepsin) was analyzed by liquid chromatography in combination with mass spectrometry. The results showed that (1) all synthesized bioconjugates had in vitro cytostatic effect, (2) they were stable in human serum at least for 24 h, and (3) they were hydrolyzed in the presence of lysosomal homogenate. All compounds were stable in the presence of (1) pepsin and (2) trypsin (except for the (4)Lys containing bioconjugate). In the presence of chymotrypsin, all bioconjugates were digested; the degradation rate strongly depending on their structure. The bioconjugates in which (4)Ser was replaced by N-Me-Ser or Lys(Ac) had the highest enzymatic stability, making them potential candidates for oral administration. In vivo tumor growth inhibitory effect of two selected bioconjugates was evaluated on orthotopically developed C26 murine colon carcinoma bearing mice. The results indicated that the compound containing Lys(Ac) in position 4 had significantly higher antitumor activity than the parent bioconjugate.


Peptides | 2007

Structure, enzymatic stability and antitumor activity of sea lamprey GnRH-III and its dimer derivatives.

Gábor Mező; András Czajlik; Marilena Manea; Annamaria Jakab; Viktor Farkas; Zsuzsa Majer; Elemér Vass; Andrea Bodor; Bence Kapuvári; Mariann Boldizsár; Borbála Vincze; Orsolya Csuka; Magdolna Kovacs; Michael Przybylski; András Perczel; Ferenc Hudecz

Direct antitumor activity of sea lamprey (Petromyzon marinus) gonadotropin-releasing hormone III (Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2); lGnRH-III) was described on several tumor cells. To improve the selectivity of antitumor effects without increasing the hormone releasing activity and to enhance the enzymatic stability, lGnRH-III dimers were prepared via disulfide bond formation. Our results demonstrate that the lGnRH-III dimer derivatives exhibited higher antiproliferative effect and enzymatic stability in comparison with the native lGnRH-III, while lower LH-releasing potency was determined. In order to find a correlation between the biological and structural features of these compounds, the conformation of lGnRH-III and its dimer derivatives was determined by ECD, VCD, FT-IR and (1)H NMR.


PLOS ONE | 2011

Isolation of Radial Glia-Like Neural Stem Cells from Fetal and Adult Mouse Forebrain via Selective Adhesion to a Novel Adhesive Peptide-Conjugate

Károly Markó; Tímea Kőhidi; Nóra Hádinger; Márta Jelitai; Gábor Mező; Emília Madarász

Preferential adhesion of neural stem cells to surfaces covered with a novel synthetic adhesive polypeptide (AK-cyclo[RGDfC]) provided a unique, rapid procedure for isolating radial glia-like cells from both fetal and adult rodent brain. Radial glia-like (RGl) neural stem/progenitor cells grew readily on the peptide-covered surfaces under serum-free culture conditions in the presence of EGF as the only growth factor supplement. Proliferating cells derived either from fetal (E 14.5) forebrain or from different regions of the adult brain maintained several radial glia-specific features including nestin, RC2 immunoreactivity and Pax6, Sox2, Blbp, Glast gene expression. Proliferating RGl cells were obtained also from non-neurogenic zones including the parenchyma of the adult cerebral cortex and dorsal midbrain. Continuous proliferation allowed isolating one-cell derived clones of radial glia-like cells. All clones generated neurons, astrocytes and oligodendrocytes under appropriate inducing conditions. Electrophysiological characterization indicated that passive conductance with large delayed rectifying potassium current might be a uniform feature of non-induced radial glia-like cells. Upon induction, all clones gave rise to GABAergic neurons. Significant differences were found, however, among the clones in the generation of glutamatergic and cathecolamine-synthesizing neurons and in the production of oligodendrocytes.


European Journal of Pharmaceutical Sciences | 2015

In vivo imaging of Aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer 68Ga-NOTA-c(NGR)

Gábor Máté; István Kertész; Kata Nóra Enyedi; Gábor Mező; János Angyal; Nikolett Vasas; Adrienn Kis; Éva Szabó; Miklós Emri; Tamás Bíró; László Galuska; György Trencsényi

PURPOSE Aminopeptidase N (APN/CD13) plays an important role in tumor neoangiogenic process and the development of metastases. Furthermore, it may serve as a potential target for cancer diagnosis and therapy. Previous studies have already shown that asparagine-glycine-arginine (NGR) peptides specifically bind to APN/CD13. The aim of the study was to synthesize and investigate the APN/CD13 specificity of a novel (68)Ga-labeled NOTA-c(NGR) molecule in vivo using miniPET. METHODS c[KNGRE]-NH2 peptide was conjugated with p-SCN-Bn-NOTA and was labeled with Ga-68 ((68)Ga-NOTA-c(NGR)). Orthotopic and heterotopic transplanted mesoblastic nephroma (NeDe) bearing Fischer-344 rats were prepared, on which biodistribution studies and miniPET scans were performed for both (68)Ga-NOTA-c(NGR) and ανβ3 integrin selective (68)Ga-NODAGA-[c(RGD)]2 tracers. APN/CD13 receptor expression of NeDe tumors and metastases was analyzed by western blot. RESULTS (68)Ga-NOTA-c(NGR) was produced with high specific activity (5.13-5.92GBq/μmol) and with excellent radiochemical purity (95%<), at all cases. Biodistribution studies in normal rats showed that uptake of the (68)Ga-NOTA-c(NGR) was significantly (p⩽0.05) lower in abdominal organs in comparison with (68)Ga-NODAGA-[c(RGD)]2. Both radiotracers were mainly excreted from the kidney. In NeDe tumor bearing rats higher (68)Ga-NOTA-c(NGR) accumulation was found in the tumors than that of the (68)Ga-NODAGA-[c(RGD)]2. Using orthotopic transplantation, metastases were developed which showed specific (68)Ga-NOTA-c(NGR) uptake. Western blot analysis confirmed the presence of APN/CD13 expression in NeDe tumors and metastases. CONCLUSION Our novel radiotracer (68)Ga-NOTA-c(NGR) showed specific binding to the APN/CD13 expressed ortho- and heterotopic transplanted NeDe tumors. Therefore, (68)Ga-NOTA-c(NGR) is a suitable tracer for the detection of APN/CD13 positive tumors and metastases in vivo.


European Journal of Medicinal Chemistry | 2012

Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates.

Rózsa Hegedüs; Marilena Manea; Erika Orbán; Ildikó Szabó; Éva Kiss; Éva Sipos; Gabor Halmos; Gábor Mező

Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors.


Chemistry: A European Journal | 2016

A Double-Clicking Bis-Azide Fluorogenic Dye for Bioorthogonal Self-Labeling Peptide Tags.

Orsolya Demeter; Eszter A. Fodor; Mihály Kállay; Gábor Mező; Krisztina Németh; Pál Szabó; Péter Kele

Herein, we give the very first example for the development of a fluorogenic molecular probe that combines the two-point binding specificity of biarsenical-based dyes with the robustness of bioorthogonal click-chemistry. This proof-of-principle study reports on the synthesis and fluorogenic characterization of a new, double-quenched, bis-azide fluorogenic probe suitable for bioorthogonal two-point tagging of small peptide tags by double strain-promoted azide-alkyne cycloaddition. The presented probe exhibits remarkable increase in fluorescence intensity when reacted with bis-cyclooctynylated peptide sequences, which could also serve as possible self-labeling small peptide tag motifs.


Chemistry-an Asian Journal | 2013

NIR mega-stokes fluorophores for bioorthogonal labeling and energy transfer systems - An efficient quencher for daunomycin

Gergely B. Cserép; Kata Nóra Enyedi; Attila Demeter; Gábor Mező; Péter Kele

A set of new azide- and alkyne-bearing lepidinium-based fluorophores were synthesized for bioorthogonal labeling schemes. These fluorescent dyes all show large Stokes-shifts with emission maxima in the near-infrared (NIR) region of the electromagnetic spectrum. The applicability of these dyes in the construction of energy-transfer systems was tested using one of these new fluorescent tags and daunomycin (Dau), an anticancer drug with fluorescent features. These daunomycin conjugates are the very first examples of fluorescently modulated constructs of this anticancer agent. The dually labeled architectures proved that the applied fluorescent dye can be utilized as an efficient quencher for daunomycin. Enzymatic cleavage of a dually labeled enzyme substrate resulted in full recovery of the fluorescence of daunomycin. Such fluorescently modulated Dau conjugates can provide useful information for the mechanism of action of Dau-regulated cell death processes.

Collaboration


Dive into the Gábor Mező's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferenc Hudecz

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Szilvia Bősze

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Erika Orbán

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bence Kapuvári

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Borbála Vincze

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gitta Schlosser

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge