Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor Turu is active.

Publication


Featured researches published by Gábor Turu.


Journal of Molecular Endocrinology | 2010

Signal transduction of the CB1 cannabinoid receptor.

Gábor Turu; László Hunyady

The CB(1) cannabinoid receptor (CB(1)R) is the major cannabinoid receptor in neuronal cells and the brain, but it also occurs in endocrine cells and other peripheral tissues. CB(1)R is a member of the superfamily of G-protein-coupled receptors (GPCRs), which are characterized by seven transmembrane helices. The major mediators of CB(1)R are the G proteins of the G(i/o) family, which inhibit adenylyl cyclases in most tissues and cells, and regulate ion channels, including calcium and potassium ion channels. Regulation of ion channels is an important component of neurotransmission modulation by endogenous cannabinoid compounds released in response to depolarization and Ca(2+)-mobilizing hormones. However, evidence exists that CB(1)Rs can also stimulate adenylyl cyclase via G(s), induce receptor-mediated Ca(2+) fluxes and stimulate phospholipases in some experimental models. Stimulation of CB(1)R also leads to phosphorylation and activation of mitogen-activated protein kinases (MAPK), such as p42/p44 MAPK, p38 MAPK and c-Jun N-terminal kinase, which can regulate nuclear transcription factors. Activated and phosphorylated CB(1)Rs also associate with beta-arrestin molecules, which can induce the formation of signalling complexes and participate in the regulation of GPCR signalling. Recent data also suggest that CB(1)Rs can form homo- and heterodimers/oligomers, and the altered pharmacological properties of these receptor complexes may explain the pharmacological differences observed in various tissues.


Journal of Biological Chemistry | 2007

The Role of Diacylglycerol Lipase in Constitutive and Angiotensin AT 1 Receptor- stimulated Cannabinoid CB1 Receptor Activity *

Gábor Turu; Anne Simon; Pál Gyombolai; László Szidonya; Gyorgy Bagdy; Zsolt Lenkei; László Hunyady

The cannabinoid CB1 receptor (CB1R) is a G protein-coupled receptor, which couples to the Gi/o family of heterotrimeric G proteins. The receptor displays both basal and agonist-induced signaling and internalization. Although basal activity of CB1Rs is attributed to constitutive (agonist-independent) receptor activity, studies in neurons suggested a role of postsynaptic endocannabinoid (eCB) release in the persistent activity of presynaptic CB1Rs. To elucidate the role of eCBs in basal CB1R activity, we have investigated the role of diacylglycerol lipase (DAGL) in this process in Chinese hamster ovary (CHO) cells, which are not targeted specifically with eCBs. Agonist-induced G protein activation was determined by detecting dissociation G protein subunits expressed in CHO cells with bioluminescence resonance energy transfer (BRET), after labeling the α and β subunits with Renilla luciferase and enhanced yellow fluorescent protein (EYFP), respectively. Preincubation of the cells with tetrahydrolipstatin (THL), a known inhibitor of DAGLs, caused inhibition of the basal activity of CB1R. Moreover, preincubation of CHO and cultured hippocampal neurons with THL increased the number of CB1Rs on the cell membrane, which reflects its inhibitory action on CB1R internalization in non-simulated cells. In CHO cells co-expressing CB1R and angiotensin AT1 receptors, angiotensin II-induced Go protein activation that was blocked by both a CB1R antagonist and THL. These data indicate that cell-derived eCB mediators have a general role in the basal activity of CB1Rs in non-neural cells and neurons, and that this mechanism can be stimulated by AT1 receptor activation.


Journal of Biological Chemistry | 2009

Paracrine transactivation of the CB1 cannabinoid receptor by AT1 angiotensin and other Gq/11 protein-coupled receptors.

Gábor Turu; Péter Várnai; Pál Gyombolai; László Szidonya; László Offertáler; Gyorgy Bagdy; George Kunos; László Hunyady

Intracellular signaling systems of G protein-coupled receptors are well established, but their role in paracrine regulation of adjacent cells is generally considered as a tissue-specific mechanism. We have shown previously that AT1 receptor (AT1R) stimulation leads to diacylglycerol lipase-mediated transactivation of co-expressed CB1Rs in Chinese hamster ovary cells. In the present study we detected a paracrine effect of the endocannabinoid release from Chinese hamster ovary, COS7, and HEK293 cells during the stimulation of AT1 angiotensin receptors by determining CB1 cannabinoid receptor activity with bioluminescence resonance energy transfer-based sensors of G protein activation expressed in separate cells. The angiotensin II-induced, paracrine activation of CB1 receptors was visualized by detecting translocation of green fluorescent protein-tagged β-arrestin2. Mass spectrometry analyses have demonstrated angiotensin II-induced stimulation of 2-arachidonoylglycerol production, whereas no increase of anandamide levels was observed. Stimulation of Gq/11-coupled M1, M3, M5 muscarinic, V1 vasopressin, α1a adrenergic, B2 bradykinin receptors, but not Gi/o-coupled M2 and M4 muscarinic receptors, also led to paracrine transactivation of CB1 receptors. These data suggest that, in addition to their retrograde neurotransmitter role, endocannabinoids have much broader paracrine mediator functions during activation of Gq/11-coupled receptors.


FEBS Letters | 2006

Differential β‐arrestin binding of AT1 and AT2 angiotensin receptors

Gábor Turu; László Szidonya; Zsuzsanna Gáborik; László Buday; András Spät; Adrian J. L. Clark; László Hunyady

Agonist stimulation of G protein‐coupled receptors causes receptor activation, phosphorylation, β‐arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII‐bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of β‐arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.


Journal of Biological Chemistry | 2012

Angiotensin II Induces Vascular Endocannabinoid Release, Which Attenuates Its Vasoconstrictor Effect via CB1 Cannabinoid Receptors

Mária Szekeres; György L. Nádasy; Gábor Turu; Eszter Soltész-Katona; Zsuzsanna E. Tóth; András Balla; Kevin J. Catt; László Hunyady

Background: In expression systems diacylglycerol (DAG) produced during AT1 angiotensin receptor signaling can be converted to 2-arachidonoylglycerol. Results: Inhibition of CB1 receptors and DAG lipase augmented angiotensin II-induced vasoconstriction in resistance arteries. Conclusion: Angiotensin II-induced vasoconstriction is attenuated via 2-arachidonoylglycerol release and consequent CB1 receptor activation. Significance: This is the first demonstration that angiotensin II-induced endocannabinoid release can modulate vasoconstriction. In the vascular system angiotensin II (Ang II) causes vasoconstriction via the activation of type 1 angiotensin receptors. Earlier reports have shown that in cellular expression systems diacylglycerol produced during type 1 angiotensin receptor signaling can be converted to 2-arachidonoylglycerol, an important endocannabinoid. Because activation of CB1 cannabinoid receptors (CB1R) induces vasodilation and reduces blood pressure, we have tested the hypothesis that Ang II-induced 2-arachidonoylglycerol release can modulate its vasoconstrictor action in vascular tissue. Rat and mouse skeletal muscle arterioles and mouse saphenous arteries were isolated, pressurized, and subjected to microangiometry. Vascular expression of CB1R was demonstrated using Western blot and RT-PCR. In accordance with the functional relevance of these receptors WIN55212, a CB1R agonist, caused vasodilation, which was absent in CB1R knock-out mice. Inhibition of CB1Rs using O2050, a neutral antagonist, enhanced the vasoconstrictor effect of Ang II in wild type but not in CB1R knock-out mice. Inverse agonists of CB1R (SR141716 and AM251) and inhibition of diacylglycerol lipase using tetrahydrolipstatin also augmented the Ang II-induced vasoconstriction, suggesting that endocannabinoid release modulates this process via CB1R activation. This effect was independent of nitric-oxide synthase activity and endothelial function. These data demonstrate that Ang II stimulates vascular endocannabinoid formation, which attenuates its vasoconstrictor effect, suggesting that endocannabinoid release from the vascular wall and CB1R activation reduces the vasoconstrictor and hypertensive effects of Ang II.


Trends in Endocrinology and Metabolism | 2004

The role of the AT1 angiotensin receptor in cardiac hypertrophy: angiotensin II receptor or stretch sensor?

László Hunyady; Gábor Turu

Activation of the AT(1) angiotensin receptor is a clinically important maladaptive response during cardiac hypertrophy. Autocrine and paracrine effects of locally generated angiotensin II, are believed to be the main mediators of these responses. However, a recent report has suggested that mechanical stress can activate AT(1) receptors independently of angiotensin II generation. This finding, as well as recent studies on intracrine effects and the pharmacological consequences of receptor hetero-oligomerization, suggest that unexpected mechanisms could contribute to the role of the renin-angiotensin system during cardiac hypertrophy.


Molecular and Cellular Endocrinology | 2012

Regulation of endocannabinoid release by G proteins: a paracrine mechanism of G protein-coupled receptor action.

Pál Gyombolai; Dorottya Pap; Gábor Turu; Kevin J. Catt; Gyorgy Bagdy; László Hunyady

In the past years, the relationship between the endocannabinoid system (ECS) and other hormonal and neuromodulatory systems has been intensively studied. G protein-coupled receptors (GPCRs) can stimulate endocannabinoid (eCB) production via activation of G(q/11) proteins and, in some cases, G(s) proteins. In this review, we summarize the pathways through which GPCR activation can trigger eCB release, as well as the best known examples of this process throughout the body tissues. Angiotensin II-induced activation of AT(1) receptors, similar to other G(q/11)-coupled receptors, can lead to the formation of 2-arachidonoylglycerol (2-AG), an important eCB. The importance of eCB formation in angiotensin II action is supported by the finding that the hypertensive effect of angiotensin II, injected directly into the hypothalamic paraventricular nucleus of anaesthetized rats, can be abolished by AM251, an inverse agonist of CB(1) cannabinoid receptors (CB(1)Rs). We conclude that activation of the ECS should be considered as a general consequence of the stimulation of G(q/11)-coupled receptors, and may mediate some of the physiological effects of GPCRs.


Science | 2017

Predicting human olfactory perception from chemical features of odor molecules

Andreas Keller; Richard C. Gerkin; Yuanfang Guan; Amit Dhurandhar; Gábor Turu; Bence Szalai; Yusuke Ihara; Chung Wen Yu; Russ Wolfinger; Celine Vens; Leander Schietgat; Kurt De Grave; Raquel Norel; Gustavo Stolovitzky; Guillermo A. Cecchi; Leslie B. Vosshall; Pablo Meyer

How will this molecule smell? We still do not understand what a given substance will smell like. Keller et al. launched an international crowd-sourced competition in which many teams tried to solve how the smell of a molecule will be perceived by humans. The teams were given access to a database of responses from subjects who had sniffed a large number of molecules and been asked to rate each smell across a range of different qualities. The teams were also given a comprehensive list of the physical and chemical features of the molecules smelled. The teams produced algorithms to predict the correspondence between the quality of each smell and a given molecule. The best models that emerged from this challenge could accurately predict how a new molecule would smell. Science, this issue p. 820 Results of a crowdsourcing competition show that it is possible to accurately predict and reverse-engineer the smell of a molecule. It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors (“garlic,” “fish,” “sweet,” “fruit,” “burnt,” “spices,” “flower,” and “sour”). Regularized linear models performed nearly as well as random forest–based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule.


Biochemical Pharmacology | 2012

Allosteric interactions within the AT1 angiotensin receptor homodimer: Role of the conserved DRY motif

Bence Szalai; László Barkai; Gábor Turu; László Szidonya; Péter Várnai; László Hunyady

G protein coupled receptor (GPCR) dimerization has a remarkable impact on the diversity of receptor signaling. Allosteric communication between the protomers of the dimer can alter ligand binding, receptor conformation and interactions with different effector proteins. In this study we investigated the allosteric interactions between wild type and mutant protomers of type 1 angiotensin receptor (AT₁R) dimers transiently expressed in CHO cells. In our experimental setup, one protomer of the dimer was selectively stimulated and the β-arrestin2 binding and conformation alteration of the other protomer was followed. The interaction between β-arrestin2 and the non-stimulated protomer was monitored through a bioluminescence resonance energy transfer (BRET) based method. To measure the conformational alterations in the non-stimulated protomer directly, we also used a BRET based intramolecular receptor biosensor, which was created by inserting yellow fluorescent protein (YFP) into the 3rd intracellular loop of AT₁R and fusing Renilla luciferase (RLuc) to its C terminal region. We have detected β-arrestin2 binding, and altered conformation of the non-stimulated protomer. The cooperative ligand binding of the receptor homodimer was also observed by radioligand dissociation experiments. Mutation of the conserved DRY sequence in the activated protomer, which is also required for G protein activation, abolished all the observed allosteric effects. These data suggest that allosteric interactions in the homodimers of AT₁R significantly affect the function of the non-stimulated protomer, and the conserved DRY motif has a crucial role in these interactions.


Endocrinology | 2010

Angiotensin II-Induced Expression of Brain-Derived Neurotrophic Factor in Human and Rat Adrenocortical Cells

Mária Szekeres; György L. Nádasy; Gábor Turu; Katinka Süpeki; László Szidonya; László Buday; Tracy Chaplin; Adrian J. L. Clark; László Hunyady

Angiotensin II (Ang II) is a major regulator of steroidogenesis in adrenocortical cells, and is also an effective inducer of cytokine and growth factor synthesis in several cell types. In microarray analysis of H295R human adrenocortical cells, the mRNA of brain-derived neurotrophic factor (BDNF), a neurotrophin widely expressed in the nervous system, was one of the most up-regulated genes by Ang II. The aim of the present study was the analysis of the Ang II-induced BDNF expression and BDNF-induced effects in adrenocortical cells. Real-time PCR studies have shown that BDNF is expressed in H295R and rat adrenal glomerulosa cells. In H295R cells, the kinetics of Ang II-induced BDNF expression was faster than that of aldosterone synthase (CYP11B2). Inhibition of calmodulin kinase by KN93 did not significantly affect the Ang II-induced stimulation of BDNF expression, suggesting that it occurs by a different mechanism from the CYP11B2-response. Ang II also caused candesartan-sensitive, type-1 Ang II receptor-mediated stimulation of BDNF gene expression in primary rat glomerulosa cells. In rat adrenal cortex, BDNF protein was localized to the subcapsular region. Ang II increased BDNF protein levels both in human and rat cells, and BDNF secretion of H295R cells. Ang II also increased type-1 Ang II receptor-mediated BDNF expression in vivo in furosemide-treated rats. In rat glomerulosa cells, BDNF induced tropomyosin-related kinase B receptor-mediated stimulation of EGR1 and TrkB expression. These data demonstrate that Ang II stimulates BDNF expression in human and rat adrenocortical cells, and BDNF may have a local regulatory function in adrenal glomerulosa cells.

Collaboration


Dive into the Gábor Turu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge