Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel A. Vecchi is active.

Publication


Featured researches published by Gabriel A. Vecchi.


Science | 2007

Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America

Richard Seager; Mingfang Ting; Isaac M. Held; Yochanan Kushnir; Jian Lu; Gabriel A. Vecchi; Huei Ping Huang; Nili Harnik; Ants Leetmaa; Ngar Cheung Lau; Cuihua Li; Jennifer Velez; Naomi Naik

How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way. If these models are correct, the levels of aridity of the recent multiyear drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades.


Nature | 2006

Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing

Gabriel A. Vecchi; Brian J. Soden; Andrew T. Wittenberg; Isaac M. Held; Ants Leetmaa; Matthew J. Harrison

Since the mid-nineteenth century the Earths surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east–west) overturning of air across the equatorial Pacific Ocean—driven by convection to the west and subsidence to the east—known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.


Science | 2010

Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes.

Morris A. Bender; Thomas R. Knutson; Robert E. Tuleya; Joseph J. Sirutis; Gabriel A. Vecchi; Stephen T. Garner; Isaac M. Held

Stormy Weather One of the most active questions about the effects of global warming is whether, and how, it might affect the frequency and the strength of hurricanes. Some studies have suggested that warming will bring fewer, and less energetic, hurricanes, while others have claimed that we can expect more intense storms. Bender et al. (p. 454; see the news story by Kerr) explore the influence of global warming on hurricane dynamics over the Atlantic Ocean with a state-of-the-art hurricane prediction model. The model predicts that the annual total number of hurricanes in the 21st century will be less than now, but also that the number of the most intense storms per year will increase. The largest increase of the most intense hurricane frequency is predicted in the western Atlantic, which suggests that Hispaniola, the Bahamas, and the Southeast coast of the United States could be at greater risk. Global warming may increase the frequency of intense hurricanes in the western Atlantic region during the 21st century. Several recent models suggest that the frequency of Atlantic tropical cyclones could decrease as the climate warms. However, these models are unable to reproduce storms of category 3 or higher intensity. We explored the influence of future global warming on Atlantic hurricanes with a downscaling strategy by using an operational hurricane-prediction model that produces a realistic distribution of intense hurricane activity for present-day conditions. The model projects nearly a doubling of the frequency of category 4 and 5 storms by the end of the 21st century, despite a decrease in the overall frequency of tropical cyclones, when the downscaling is based on the ensemble mean of 18 global climate-change projections. The largest increase is projected to occur in the Western Atlantic, north of 20°N.


Journal of Climate | 2010

Global Warming Pattern Formation: Sea Surface Temperature and Rainfall*

Shang-Ping Xie; Clara Deser; Gabriel A. Vecchi; Jian Ma; Haiyan Teng; Andrew T. Wittenberg

Abstract Spatial variations in sea surface temperature (SST) and rainfall changes over the tropics are investigated based on ensemble simulations for the first half of the twenty-first century under the greenhouse gas (GHG) emission scenario A1B with coupled ocean–atmosphere general circulation models of the Geophysical Fluid Dynamics Laboratory (GFDL) and National Center for Atmospheric Research (NCAR). Despite a GHG increase that is nearly uniform in space, pronounced patterns emerge in both SST and precipitation. Regional differences in SST warming can be as large as the tropical-mean warming. Specifically, the tropical Pacific warming features a conspicuous maximum along the equator and a minimum in the southeast subtropics. The former is associated with westerly wind anomalies whereas the latter is linked to intensified southeast trade winds, suggestive of wind–evaporation–SST feedback. There is a tendency for a greater warming in the northern subtropics than in the southern subtropics in accordance ...


Journal of Climate | 2009

Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM

Ming Zhao; Isaac M. Held; Shian-Jiann Lin; Gabriel A. Vecchi

Abstract A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of the period 1981–2005 are generated. The correlation of yearly Atlantic hurricane counts with observations is greater than 0.8 when the model is averaged over the four realizations, supporting the view that the random part of this annual Atlantic hurricane frequency (the part not predictable given the SSTs) is relatively small (<2 hurricanes per year). Correlations with observations are lower in the east, west, and South Pacific (roughly 0.6, 0.5, and 0.3, respectively) and insignificant in the Indian Ocean. The model trends in Northern Hemisphere basin-wide frequency are consistent with the observed trends i...


Journal of Climate | 2010

Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming*

Richard Seager; Naomi Naik; Gabriel A. Vecchi

Abstract The mechanisms of changes in the large-scale hydrological cycle projected by 15 models participating in the Coupled Model Intercomparison Project phase 3 and used for the Intergovernmental Panel on Climate Change’s Fourth Assessment Report are analyzed by computing differences between 2046 and 2065 and 1961 and 2000. The contributions to changes in precipitation minus evaporation, P − E, caused thermodynamically by changes in specific humidity, dynamically by changes in circulation, and by changes in moisture transports by transient eddies are evaluated. The thermodynamic and dynamic contributions are further separated into advective and divergent components. The nonthermodynamic contributions are then related to changes in the mean and transient circulation. The projected change in P − E involves an intensification of the existing pattern of P − E with wet areas [the intertropical convergence zone (ITCZ) and mid- to high latitudes] getting wetter and arid and semiarid regions of the subtropics g...


Proceedings of the National Academy of Sciences of the United States of America | 2010

Greenhouse warming and the 21st century hydroclimate of southwestern North America

Richard Seager; Gabriel A. Vecchi

Climate models robustly predict that the climate of southwestern North America, defined as the area from the western Great Plains to the Pacific Ocean and from the Oregon border to southern Mexico, will dry throughout the current century as a consequence of rising greenhouse gases. This regional drying is part of a general drying of the subtropics and poleward expansion of the subtropical dry zones. Through an analysis of 15 coupled climate models it is shown here that the drying is driven by a reduction of winter season precipitation associated with increased moisture divergence by the mean flow and reduced moisture convergence by transient eddies. Due to the presence of large amplitude decadal variations of presumed natural origin, observations to date cannot confirm that this transition to a drier climate is already underway, but it is anticipated that the anthropogenic drying will reach the amplitude of natural decadal variability by midcentury. In addition to this drop in total precipitation, warming is already causing a decline in mountain snow mass and an advance in the timing of spring snow melt disrupting the natural water storage systems that are part of the region’s water supply system. Uncertainties in how radiative forcing will impact the tropical Pacific climate system create uncertainties in the amplitude of drying in southwest North America with a La Niña-like response creating a worst case scenario of greater drying.


Journal of Climate | 2012

Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model

Thomas L. Delworth; Anthony Rosati; Whit G. Anderson; Alistair J. Adcroft; V. Balaji; Rusty Benson; Keith W. Dixon; Stephen M. Griffies; Hyun-Chul Lee; R. C. Pacanowski; Gabriel A. Vecchi; Andrew T. Wittenberg; Fanrong Zeng; Rong Zhang

AbstractThe authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an i...


Nature | 2007

Effect of remote sea surface temperature change on tropical cyclone potential intensity

Gabriel A. Vecchi; Brian J. Soden

The response of tropical cyclone activity to global warming is widely debated. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere. Here we use climate models and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone ‘potential intensity’—a measure that provides an upper bound on cyclone intensity and can also reflect the likelihood of cyclone development. We find that changes in local sea surface temperature are inadequate for characterizing even the sign of changes in potential intensity, but that long-term changes in potential intensity are closely related to the regional structure of warming; regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. We use this relationship to reconstruct changes in potential intensity over the twentieth century from observational reconstructions of sea surface temperature. We find that, even though tropical Atlantic sea surface temperatures are currently at a historical high, Atlantic potential intensity probably peaked in the 1930s and 1950s, and recent values are near the historical average. Our results indicate that—per unit local sea surface temperature change—the response of tropical cyclone activity to natural climate variations, which tend to involve localized changes in sea surface temperature, may be larger than the response to the more uniform patterns of greenhouse-gas-induced warming.


Bulletin of the American Meteorological Society | 2014

Decadal climate prediction: An update from the trenches

Gerald A. Meehl; Lisa M. Goddard; G. J. Boer; Robert J. Burgman; Grant Branstator; Christophe Cassou; Susanna Corti; Gokhan Danabasoglu; Francisco J. Doblas-Reyes; Ed Hawkins; Alicia Karspeck; Masahide Kimoto; Arun Kumar; Daniela Matei; Juliette Mignot; Rym Msadek; Antonio Navarra; Holger Pohlmann; Michele M. Rienecker; T. Rosati; Edwin K. Schneider; Doug Smith; Rowan Sutton; Haiyan Teng; Geert Jan van Oldenborgh; Gabriel A. Vecchi; Stephen Yeager

This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialize...

Collaboration


Dive into the Gabriel A. Vecchi's collaboration.

Top Co-Authors

Avatar

Thomas L. Delworth

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Rosati

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Andrew T. Wittenberg

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ming Zhao

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard Gudgel

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Xiaosong Yang

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Liwei Jia

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Isaac M. Held

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge