Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel C. Rau is active.

Publication


Featured researches published by Gabriel C. Rau.


Journal of Geophysical Research | 2015

Assessing the accuracy of 1-D analytical heat tracing for estimating near-surface sediment thermal diffusivity and water flux under transient conditions

Gabriel C. Rau; Mark O. Cuthbert; Andrew M. McCallum; Landon J. S. Halloran; Martin S. Andersen

Amplitude decay and phase delay of oscillating temperature records measured at two vertical locations in near-surface sediments can be used to infer water fluxes, thermal diffusivity, and sediment scour/deposition. While methods that rely on the harmonics-based analytical heat transport solution assume a steady state water flux, many applications have reported transient fluxes but ignored the possible violation of this assumption in the method. Here we use natural heat tracing as an example to investigate the extent to which changes in the water flux, and associated temperature signal nonstationarity, can be separated from other influences. We systematically scrutinize the assumption of steady state flow in analytical heat tracing and test the capabilities of the method to detect the timing and magnitude of flux transients. A numerical model was used to synthesize the temperature response to different step and ramp changes in advective thermal velocity magnitude and direction for both a single-frequency and multifrequency temperature boundary. Time-variable temperature amplitude and phase information were extracted from the model output with different signal-processing methods. We show that a worst-case transient flux induces a temperature nonstationarity, the duration of which is less than 1 cycle for realistic sediment thermal diffusivities between 0.02 and 0.13 m2/d. However, common signal-processing methods introduce erroneous temporal spreading of advective thermal velocities and significant anomalies in thermal diffusivities or sensor spacing, which is used as an analogue for streambed scour/deposition. The most time-variant spectral filter can introduce errors of up to 57% in velocity and 33% in thermal diffusivity values with artifacts spanning ±2 days around the occurrence of rapid changes in flux. Further, our results show that analytical heat tracing is unable to accurately resolve highly time-variant fluxes and thermal diffusivities and does not allow for the inference of scour/depositional processes due to the limitations of signal processing in disentangling flux-related signal nonstationarities from those stemming from other sources. To prevent erroneous interpretations, hydrometric data should always be acquired in combination with temperature records.


Water Resources Research | 2014

River‐aquifer interactions in a semiarid environment investigated using point and reach measurements

Andrew M. McCallum; Martin S. Andersen; Gabriel C. Rau; Joshua R. Larsen; R. Ian Acworth

A critical hydrological process is the interaction between rivers and aquifers. However, accurately determining this interaction from one method alone is difficult. At a point, the water exchange in the riverbed can be determined using temperature variations over depth. Over the river reach, differential gauging can be used to determine averaged losses or gains. This study combines these two methods and applies them to a 34 km reach of a semiarid river in eastern Australia under highly transient conditions. It is found that high and low river flows translate into high and low riverbed Darcy fluxes, and that these are strongly losing during high flows, and only slightly losing or gaining for low flows. The spatial variability in riverbed Darcy fluxes may be explained by riverbed heterogeneity, with higher variability at greater spatial scales. Although the river-aquifer gradient is the main driver of riverbed Darcy flux at high flows, considerable uncertainty in both the flux magnitude and direction estimates were found during low flows. The reach-scale results demonstrate that high-flow events account for 64% of the reach loss (or 43% if overbank events are excluded) despite occurring only 11% of the time. By examining the relationship between total flow volume, river stage and duration for in-channel flows, we find the loss ratio (flow loss/total flow) can be greater for smaller flows than larger flows with similar duration. Implications of the study for the modeling and management of connected water resources are also discussed. Key Points Losing riverbed fluxes under high flows and approximately neutral under low flows Event driven riverbed fluxes dominate reach losses Smaller events can have higher loss ratio than larger events


Scientific Reports | 2015

Evaporative cooling of speleothem drip water

Mark O. Cuthbert; Gabriel C. Rau; Martin S. Andersen; Hamid Roshan; Helen Rutlidge; Christopher E. Marjo; Monika Markowska; Catherine N. Jex; Peter W. Graham; Gregoire Mariethoz; R. I. Acworth; Andy Baker

This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change.


Hydrogeology Journal | 2014

Understanding connected surface-water/groundwater systems using Fourier analysis of daily and sub-daily head fluctuations

R. I. Acworth; Gabriel C. Rau; Andrew M. McCallum; Martin S. Andersen; Mark O. Cuthbert

The long-term monitoring records of hydraulic heads frequently contain fluctuations originating from different cyclic drivers. Fourier analysis applied to these records can reveal connected surface-water/groundwater system characteristics. The various components of the atmospheric tides, the earth tides and the presence of diurnal responses to evapotranspiration are identified and isolated through band-pass filtering of data recorded from both vented and absolute gauge transducers. The signature of the different cyclic drivers is contained in amplitude and phase of the various signal components and can be used to determine the degree of system confinement. A methodology is described for the calculation of barometric efficiency in confined aquifers based upon the amplitude of the M2 and S2 components of the earth and atmospheric tides. It is demonstrated that Fourier analysis of water-level fluctuations is a simple but underused tool that can help to characterise shallow groundwater systems.RésuméLes enregistrements de suivi à long terme des charges hydrauliques renferment fréquemment des fluctuations ayant pour origine différents facteurs cycliques. L’analyse de Fourier appliquée à ces enregistrements peut révéler les caractéristiques de systèmes connectés eaux de surface/eaux souterraines. Les différentes composantes des marées atmosphériques, des marées terrestres et la présence de réponses diurnes à l’évapotranspiration sont identifiées et isolées par filtration des bandes passantes des données, enregistrées tant au moyen de capteurs absolus que compensés en pression atmosphérique. La signature des différents facteurs cycliques est contenue dans l’amplitude et la phase des différentes composantes du signal et peut être utilisée pour déterminer le degré de captivité du système. Une méthodologie est décrite pour le calcul de l’efficacité barométrique des aquifères captifs, basée sur l’amplitude des composantes M2 and S2 des marées terrestres et atmosphériques. Il est démontré que l’analyse de Fourier des fluctuations de niveaux d’eau est un outil simple mais sous-utilisé qui peut aider à caractériser les systèmes aquifères peu profonds.ResumenLos registros de monitoreo a largo plazo de las cargas hidráulicas frecuentemente contienen fluctuaciones procedentes de diferentes forzantes cíclicos. El análisis de Fourier aplicado a estos registros puede revelar las características de la conexión de los sistemas agua superficial / aguas subterráneas. Se identificaron y aislaron los distintos componentes de las mareas atmosféricas, las mareas terrestres y la presencia de respuestas diurnas a la evapotranspiración a través de filtros pasa banda de datos provenientes de sensores de presión ventilados y absolutos. Las peculiaridades de los diferentes forzantes cíclicos están contenidas en amplitud y fase de las distintas señales componentes y pueden ser usados para determinar el grado de confinamiento del sistema. Se describe una metodología para el cálculo de la eficiencia barométrica en acuíferos confinados basado en la amplitud de las componentes M2 y S2 de las mareas terrestre y atmosférica. Se demuestra que el análisis de Fourier de las fluctuaciones de los niveles de agua es una herramienta simple pero poco utilizada que puede ayudar a caracterizar sistemas de agua subterránea someros.摘要期水头监测记录经常包括不同循环驱动产生的波动。对这些记录进行傅里叶分析可揭示相互连接的地表水/地下水系统的特征。通过对排放的和绝对的计量传感器记录的资料进行带通滤波,确定了大气潮汐、地球潮汐各种各样的成分及存在着对蒸发蒸腾一日间的响应,并对每个因素进行了单独的分析。不同循环驱动的特征码包含在各种各样信号成分的幅相中,可用来确定系统限制的程度。根据地球潮汐和大气潮汐M2 和 S2成分的振幅,描述了计算承压含水层中气压效率的方法。研究表明,水位波动的傅里叶分析法是一个简单而又未充分利用的工具,可有助于描述浅层地下水系统的特征。ResumoOs registros de monitorização de níveis piezométricos a longo prazo contêm frequentemente oscilações causadas por fatores cíclicos. Uma análise de Fourier aplicada a esses registros pode revelar caraterísticas do sistema de interações água superficial/água subterrânea. As várias componentes das marés atmosféricas e terrestres e a presença de respostas diurnas à evapotranspiração são identificadas e isoladas por métodos de filtragem passa-banda de dados registados a partir de transdutores de pressão absoluta ou ventilados. A assinatura dos diferentes fatores cíclicos está incluída na amplitude e fase dos vários componentes de sinal e pode ser usada para determinar o grau de confinamento do sistema. É descrita uma metodologia para o cálculo da eficiência barométrica em aquíferos confinados, com base na amplitude das componentes M2 e S2 das marés atmosféricas e terrestres. Demonstra-se que a análise de Fourier das flutuações de nível de água é uma ferramenta simples, mas subutilizada, que pode ajudar a caraterizar sistemas hidrogeológicos subsuperficiais.


Environmental Earth Sciences | 2016

Spatial variability of cave-air carbon dioxide and methane concentrations and isotopic compositions in a semi-arid karst environment

L. K. McDonough; Charlotte P. Iverach; Sabrina Beckmann; Mike Manefield; Gabriel C. Rau; Andy Baker; Bryce F. J. Kelly

There is insufficient information on the movement of air in karst environments to constrain the uncertainty associated with quantifying sources and sinks of methane (CH4) and carbon dioxide (CO2) within caves for global carbon accounting. We analysed cave-air samples for their CO2 and CH4 concentrations ([CO2] and [CH4]) and carbon isotopic compositions from sampling campaigns in winter (August 2014) and summer (February 2015) at numerous heights and locations throughout Gaden and Cathedral caves, in a semi-arid environment, Wellington Caves, NSW, Australia. Ventilation is the dominant control on cave-air CO2 and CH4, with the highest cave-air CO2 concentrations ([CO2]cave) occurring in summer, in association with the lowest cave-air CH4 concentrations ([CH4]cave). Analyses show that the cave-air CO2 has both atmospheric and soil sources. Soil air and cave air in both caves undergo methanogenesis and methanotrophy, but we identify cave-specific differences in cave-air CH4 and CO2. [CH4]cave in Cathedral Cave shows an inverse relationship to [CO2]cave, particularly in areas separated from the main cave passage. In contrast, Gaden Cave has near-atmospheric [CH4]cave and isotopic ratios present at all locations sampled in winter. Where no ventilation is occurring in summer, [CH4]cave in Gaden Cave decreases, but remains reasonably high compared to Cathedral Cave. Our research shows adjacent caves vary in their ability to act as a net sink for CH4, and highlights the need for further studies before global generalisations can be made about the carbon budget of karst environments.


Crop & Pasture Science | 2013

Aquifer heterogeneity and response time: the challenge for groundwater management

Bryce F. J. Kelly; Wendy Timms; Martin S. Andersen; Andrew M. McCallum; R. S. Blakers; R. Smith; Gabriel C. Rau; A. Badenhop; K. Ludowici; R. I. Acworth

Abstract. Groundwater is an important contributor to irrigation water supplies. The time lag between withdrawal and the subsequent impacts on the river corridor presents a challenge for water management. We highlight aspects of this challenge by examining trends in the groundwater levels and changes in groundwater management goals for the Namoi Catchment, which is within the Murray–Darling Basin, Australia. The first high-volume irrigation bore was installed in the cotton-growing districts in the Namoi Catchment in 1966. The development of high-yielding bores made accessible a vast new water supply, enabling cotton growers to buffer the droughts. Prior to the development of a groundwater resource it is difficult to accurately predict how the water at the point of withdrawal is hydraulically connected to recharge zones and nearby surface-water features. This is due to the heterogeneity of the sediments from which the water is withdrawn. It can take years or decades for the impact of groundwater withdrawal to be transmitted kilometres through the aquifer system. We present the analysis of both historical and new groundwater level and streamflow data to quantify the impacts of extensive groundwater withdrawals on the watertable, hydraulic gradients within the semi-confined aquifers, and the movement of water between rivers and aquifers. The results highlight the need to monitor the impacts of irrigated agriculture at both the regional and local scales, and the need for additional research on how to optimise the conjunctive use of both surface-water and groundwater to sustain irrigated agriculture while minimising the impact on groundwater-dependent ecosystems.


Australian Journal of Earth Sciences | 2015

Late Cenozoic paleovalley fill sequence from the Southern Liverpool Plains, New South Wales—implications for groundwater resource evaluation

R. I. Acworth; Wendy Timms; Bryce F. J. Kelly; D. McGeeney; Timothy J. Ralph; Zacchary T. Larkin; Gabriel C. Rau

The Liverpool Plains in northern New South Wales contain some of the best agricultural land in Australia and are underlain by extensive smectite clay-dominated soils sourced from weathering the alkali basalts of the Liverpool Ranges. It had been thought that a relatively simple geological model explained the underlying Cenozoic sequence with salt-rich clays of the Narrabri Formation overlying sands and gravel aquifers comprising the Gunnedah Formation. Extensive groundwater modelling based upon this simple conceptualisation has been used in management plans proposed by the mining and agricultural industries. A 31.5 m core has been recovered using minimally disturbed triple-tube coring methods at Cattle Lane (Latitude –31.52° S, Longitude 150.47° E) to resolve uncertainty concerning the aquitard status of the upper layer. Recovered core has been examined and tested to determine grainsize, cation-exchange capacity, X-ray diffraction, X-ray fluorescence and microscopic examination of granular components. These measurements complement surface and borehole geophysical techniques, hydrogeological data and hydrochemical analysis of water samples recovered from a series of specially constructed piezometers adjacent to the cored hole. The sequence overlies a Late Cretaceous channel cut into Permian bedrock at 91 m depth with sands and clays below 31.5 m considered to represent various alluvial fill events mostly occurring since the Early Pliocene. Erosion of Late Eocene alkali basalts on the Liverpool Ranges, with the formation of smectite clays, pedogenic carbonates and with the addition of quartz from both eolian sources and locally derived from adjacent Triassic sandstone hills, provides the great majority of the sediment recovered from the cores. Late Pleistocene (114 ka) to Holocene ages were determined for the core from three optically stimulated luminescence (OSL) measurements on fine sands (13, 23 and 29 m BG). Detailed examination has failed to detect any evidence of a boundary between Narrabri and Gunnedah formations revealing rather a gradual change in dominance of clays and silts over sands and gravels embedded in a clay-rich matrix. This result challenges the conceptualisation used to conduct groundwater modelling on the Liverpool Plains.


Water Resources Research | 2016

Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

Mark O. Cuthbert; R. I. Acworth; Martin S. Andersen; Joshua R. Larsen; Andrew M. McCallum; Gabriel C. Rau; John H. Tellam

Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.


Geophysical Research Letters | 2016

An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides

R. Ian Acworth; Landon J. S. Halloran; Gabriel C. Rau; Mark O. Cuthbert; Tony L. Bernardi

The groundwater hydraulic head response to the worldwide and ubiquitous atmospheric tide at 2 cycles per day (cpd) is a direct function of confined aquifer compressible storage. The ratio of the responses of hydraulic head to the atmospheric pressure change is a measure of aquifer barometric efficiency, from which formation compressibility and aquifer specific storage can be determined in situ rather than resorting to laboratory or aquifer pumping tests. The Earth tide also impacts the hydraulic head response at the same frequency, and a method is developed here to quantify and remove this interference. As a result, the barometric efficiency can be routinely calculated from 6-hourly hydraulic head, atmospheric pressure, and modeled Earth tide records where available for a minimum of 15 days duration. This new approach will be of critical importance in assessing worldwide problems of land subsidence or groundwater resource evaluation that both occur due to groundwater abstraction


Water Resources Research | 2017

Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides

R. Ian Acworth; Gabriel C. Rau; Landon J. S. Halloran; Wendy Timms

Accurate determination of groundwater state of confinement and compressible storage properties at vertical resolution over depth is notoriously difficult. We use the hydraulic head response to atmospheric tides at 2 cpd frequency as a tracer to quantify barometric efficiency (BE) and specific storage (Ss) over depth. Records of synthesized Earth tides, atmospheric pressure, and hydraulic heads measured in nine piezometers completed at depths between 5 and 55 m into unconsolidated smectitic clay and silt, sand and gravel were examined in the frequency domain. The barometric efficiency increased over depth from ∼0.05 in silty clay to ∼0.15 in sands and gravels. BE for silty clay was confirmed by calculating the loading efficiency as 0.95 using rainfall at the surface. Specific storage was calculated using effective rather than total moisture. The differences in phase between atmospheric pressure and hydraulic heads at 2 cpd were ∼180° below 10 m indicating confined conditions despite the low BE. Heads in the sediment above a fine sand and silt layer at 12 m exhibited a time variable phase difference between 0° and 180° indicating varying confinement. Our results illustrate that the atmospheric tide at 2 cpd is a powerful natural tracer for quantifying groundwater state of confinement and compressible storage properties in layered formations from hydraulic heads and atmospheric pressure records without the need for externally induced hydraulic stress. This approach could significantly improve the development of conceptual hydrogeological model used for groundwater resource development and management.

Collaboration


Dive into the Gabriel C. Rau's collaboration.

Top Co-Authors

Avatar

Martin S. Andersen

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Mark O. Cuthbert

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

R. Ian Acworth

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Andrew M. McCallum

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Landon J. S. Halloran

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

R. I. Acworth

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Hamid Roshan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Andy Baker

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Marjo

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Helen Rutlidge

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge