Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Forn-Cuní is active.

Publication


Featured researches published by Gabriel Forn-Cuní.


PLOS ONE | 2012

High-throughput sequence analysis of turbot (Scophthalmus maximus) transcriptome using 454- pyrosequencing for the discovery of antiviral immune genes

Patricia Pereiro; Pablo Balseiro; Alejandro Romero; Sonia Dios; Gabriel Forn-Cuní; Berta Fuste; Josep V. Planas; Sergi Beltran; Beatriz Novoa; Antonio Figueras

Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an enormous variety of sequences belonging to genes involved in the defense mechanisms.


DNA Research | 2016

Whole Genome Sequencing of Turbot (Scophthalmus maximus; Pleuronectiformes): A Fish Adapted to Demersal Life

Antonio Figueras; Diego Robledo; André Corvelo; Miguel Hermida; Patricia Pereiro; Juan A. Rubiolo; Jèssica Gómez-Garrido; Laia Carreté; Xabier Bello; Marta Gut; Ivo Gut; Marina Marcet-Houben; Gabriel Forn-Cuní; Beatriz Galán; José Luis García; J. L. Abal-Fabeiro; Belén G. Pardo; Xoana Taboada; Carlos Fernández; Anna Vlasova; Antonio Hermoso-Pulido; Roderic Guigó; José Antonio Álvarez-Dios; Antonio Gómez-Tato; Ana Viñas; Xulio Maside; Toni Gabaldón; Beatriz Novoa; Carmen Bouza; Tyler Alioto

The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot.


PLOS ONE | 2014

The evolution and appearance of C3 duplications in fish originate an exclusive teleost c3 gene form with anti-inflammatory activity.

Gabriel Forn-Cuní; Edimara S. Reis; Sonia Dios; David Posada; John D. Lambris; Antonio Figueras; Beatriz Novoa

The complement system acts as a first line of defense and promotes organism homeostasis by modulating the fates of diverse physiological processes. Multiple copies of component genes have been previously identified in fish, suggesting a key role for this system in aquatic organisms. Herein, we confirm the presence of three different previously reported complement c3 genes (c3.1, c3.2, c3.3) and identify five additional c3 genes (c3.4, c3.5, c3.6, c3.7, c3.8) in the zebrafish genome. Additionally, we evaluate the mRNA expression levels of the different c3 genes during ontogeny and in different tissues under steady-state and inflammatory conditions. Furthermore, while reconciling the phylogenetic tree with the fish species tree, we uncovered an event of c3 duplication common to all teleost fishes that gave rise to an exclusive c3 paralog (c3.7 and c3.8). These paralogs showed a distinct ability to regulate neutrophil migration in response to injury compared with the other c3 genes and may play a role in maintaining the balance between inflammatory and homeostatic processes in zebrafish.


PLOS ONE | 2014

Interferon-Induced Genes of the Expanded IFIT Family Show Conserved Antiviral Activities in Non-Mammalian Species

Mónica Varela; Patricia Diaz-Rosales; Patricia Pereiro; Gabriel Forn-Cuní; Maria M. Costa; Sonia Dios; Alejandro Romero; Antonio Figueras; Beatriz Novoa

Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in the protective response to viral infection, although the precise mechanism of IFITs for reducing viral proliferation is currently unknown. The interaction with the translation initiation factor eIF-3 or viral proteins and the sequestering of viral RNA have been proposed as potential antiviral functions for these proteins. In humans, four members of this family have been characterized. Nevertheless, information about these proteins in fish is almost non-existent. Exploiting the conservation of synteny between human and zebrafish genomes, we have identified ten members of the IFIT family located on four different chromosomes. The induction of these genes was examined both in vitro and in vivo after interferon (IFN) administration and rhabdovirus challenge. Whereas an induction of IFIT genes was observed after interferon treatments (IFNΦ1, IFNΦ2 and IFNΦ3), the viral infection did not affect these IFN-induced genes in vitro, and even reduced the IFN-induced expression of these genes. The response was largely different in vivo, with a broad up-regulation of IFIT genes after viral challenge. In addition, three selected IFITs were cloned in an expression vector and microinjected into zebrafish larvae to examine the protective effect of IFITs upon viral infection. Reduction in the mortality rate was observed confirming a conserved antiviral function in non-mammalian species.


Developmental and Comparative Immunology | 2013

IL-22 is a key player in the regulation of inflammation in fish and involves innate immune cells and PI3K signaling

Maria M. Costa; Paolo R. Saraceni; Gabriel Forn-Cuní; Sonia Dios; Alejandro Romero; Antonio Figueras; Beatriz Novoa

IL-22 plays a role in various disorders in mammals, including mucosal-associated infections and inflammatory diseases. No functional IL-22 studies have been conducted on non-mammals to date. In this study, recombinant IL-22 (rIL-22) from turbot was produced to investigate its effects as a bioactive molecule. The expression of several pro-inflammatory cytokines was increased after rIL-22 treatment and reduced by pre-treatment with a JAK/STAT inhibitor. The involvement of the PI3K pathway in IL-22 induction was demonstrated. rIL-22 reduced the mortality in Aeromonas salmonicida-infected turbot, while higher Aeromonas hydrophila- or LPS-induced mortality was observed when IL-22 was blocked in zebrafish embryos. IL-22 knockdown increased pro-inflammatory cytokine expression in bacteria-stimulated fish. In zebrafish, IL-22 expression was detected primarily in the myeloid innate linage. It was found during early developmental stages when the adaptive immune response is not yet functional and in rag1(-)/(-) fish that lack an adaptive immune system. Our results clarify the conserved role of IL-22 in lower vertebrates. We suggest for the first time that IL-22 constitutes a key regulator of inflammatory homeostasis even in distant species such as teleosts, which diverged from mammals more than 350 million years ago.


Diseases of Aquatic Organisms | 2014

Occurrence, seasonality and infectivity of Vibrio strains in natural populations of mussels Mytilus galloprovincialis

Alejandro Romero; Maria M. Costa; Gabriel Forn-Cuní; Pablo Balseiro; Rubén Chamorro; Sonia Dios; Antonio Figueras; Beatriz Novoa

Widespread and large-scale mortalities of bivalve molluscs significantly affect their production. A number of pathogens have been identified as the primary causes of death in oysters or clams, especially bacteria of the genus Vibrio. We evaluated the occurrence, seasonality and infectivity of Vibrio strains associated with natural mussel (Mytilus galloprovincialis) populations. In particular, different isolates of V. splendidus and V. aestuarianus were analysed because they were associated with major oyster mortalities in areas where mussels are cultured without presenting mortalities. The presence of both Vibrio spp. was analysed bimonthly in mussels, water, sediment, plankton and other associated fauna from 2 sites in Galicia (NW Spain), the region with the highest mussel production in Europe. Environmental factors were also considered. The pathogenicity of different Vibrio isolates was analysed by performing experimental infections in mussels with strains isolated from the field. Results showed that Vibrio populations were mainly influenced by changes in water temperature and salinity. V. splendidus was dominant during the warm months and V. aestuarianus was predominant throughout the cold season. The sediment was the most important natural reservoir for bacteria. Experimental infections showed the extreme resistance of mussels to bacterial pathogens. Isolates of V. splendidus and V. aestuarianus were only moderately pathogenic for mussels in intramuscular infections and bath infections, and mortalities only occurred when animals were infected with a high bacterial concentration in adverse environmental conditions (hypoxia and 25°C). Although the pathogenicity of the Vibrio strains isolated from the wild was low for mussels, their potential risk for other bivalves cannot be ignored.


Scientific Reports | 2017

Conserved gene regulation during acute inflammation between zebrafish and mammals

Gabriel Forn-Cuní; Mónica Varela; Patricia Pereiro; Beatriz Novoa; Antonio Figueras

Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.


Journal of Endocrinology | 2015

Liver immune responses to inflammatory stimuli in a diet-induced obesity model of zebrafish.

Gabriel Forn-Cuní; Mónica Varela; Conrado M Fernández-Rodríguez; Antonio Figueras; Beatriz Novoa

Obesity- and metabolic syndrome-related diseases are becoming important medical challenges for the western world. Non-alcoholic fatty liver disease (NAFLD) is a manifestation of these altered conditions in the liver, and inflammation appears to be a factor that is tightly connected to its evolution. In this study, we used a diet-induced obesity approach in zebrafish (Danio rerio) based on overfeeding to analyze liver transcriptomic modulation in the disease and to determine how obesity affects the immune response against an acute inflammatory stimulus such as lipopolysaccharide (LPS). Overfed zebrafish developed an obese phenotype, showed signs of liver steatosis, and its modulation profile resembled that observed in humans, with overexpression of tac4, col4a3, col4a5, lysyl oxidases, and genes involved in retinoid metabolism. In response to LPS, healthy fish exhibited a typical host defense reaction comparable to that which occurs in mammals, whereas there was no significant gene modulation when comparing expression in the liver of LPS-stimulated and non-stimulated obese zebrafish at the same statistical level. The stimulation of obese fish represents a double-hit to the already damaged liver and can help understand the evolution of the disease. Finally, a comparison of the differential gene activation between stimulated healthy and obese zebrafish revealed the expected difference in the metabolic state between healthy and diseased liver. The differentially modulated genes are currently being studied as putative new pathological markers in NAFLD-stimulated liver in humans.


Fish & Shellfish Immunology | 2015

An immune-enriched oligo-microarray analysis of gene expression in Manila clam (Venerupis philippinarum) haemocytes after a Perkinsus olseni challenge

Alejandro Romero; Gabriel Forn-Cuní; Rebeca Moreira; Massimo Milan; Luca Bargelloni; Antonio Figueras; Beatriz Novoa

Parasites of the genus Perkinsus cause high mortality and economic losses in bivalves commonly produced in global aquaculture. Although the immune responses of oysters and clams naturally infected with Perkinsus marinus or Perkinsus olseni have been extensively studied, there is not much information on host response at the early stages of infection. In this study, we analysed how P. olseni influences the gene expression profiles of haemocytes from the Manila clam (Venerupis philippinarum) using temporal experimental infections and an immune-enriched microarray. We identified an early phase of infection that was characterised by no mortality and by the increased expression of genes associated with pathogen recognition, production of nitrogen radicals and antimicrobial activity. Cellular processes such as inhibition of serine proteases and proliferation were also involved in this early response. This phase was followed by an intermediate stage, when the pathogen was most likely multiplying and infecting new areas of the body, and animals began to die. In this stage, many genes related to cell movement were over-expressed. Thirty days after infection metabolic pathway genes were the most affected. Apoptosis appears to be important during pathogenesis. Our results provide novel observations of the broader innate immune response triggered by P. olseni at different infection stages.


Journal of Innate Immunity | 2016

Proinflammatory Caspase A Activation and an Antiviral State Are Induced by a Zebrafish Perforin after Possible Cellular and Functional Diversification from a Myeloid Ancestor

Mónica Varela; Gabriel Forn-Cuní; Sonia Dios; Antonio Figueras; Beatriz Novoa

In mammals, perforins play a central role in the granule-dependent cell death induced by natural killer T cells and cytotoxic T lymphocytes, and participate both in the defense against virus-infected and neoplastic cells and in the recognition of nonself molecules by the immune system. Little is known about fish perforin genes. We examined the zebrafish with the aim of increasing our knowledge about the role of perforins. We characterized 6 perforin genes in the zebrafish genome, and we studied them at the evolutionary level in combination with expression patterns in several tissues and cell populations, during both larval development and in the course of a viral infection. Our results suggest the specialization of different cell types in the production of perforins. Moreover, functional diversification during the evolution of these molecules could be inferred from this study. In particular, one of the genes, prf19b, which is mainly produced by myeloid cells, seemed to be involved in antiviral defense, conferring protection after an in vivo infection.

Collaboration


Dive into the Gabriel Forn-Cuní's collaboration.

Top Co-Authors

Avatar

Antonio Figueras

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Novoa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sonia Dios

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alejandro Romero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patricia Pereiro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mónica Varela

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pablo Balseiro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Maria M. Costa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rebeca Moreira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge