Gabriel J. Wilson
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriel J. Wilson.
Journal of Strength and Conditioning Research | 2012
Jacob M. Wilson; Jeremy P. Loenneke; Edward Jo; Gabriel J. Wilson; Michael C. Zourdos; Jeong-Su Kim
Abstract Wilson, JM, Loenneke, JP, Jo, E, Wilson, GJ, Zourdos, MC, and Kim, J.-S. The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res 26(6): 1724–1729, 2012—Muscle fibers are generally fractionated into type I, IIA, and IIX fibers. Type I fibers specialize in long duration contractile activities and are found in abundance in elite endurance athletes. Conversely type IIA and IIX fibers facilitate short-duration anaerobic activities and are proportionally higher in elite strength and power athletes. A central area of interest concerns the capacity of training to increase or decrease fiber types to enhance high-performance activities. Although interconversions between type IIA and IIX are well recognized in the literature, there are conflicting studies regarding the capacity of type I and II fibers to interconvert. Therefore, the purpose of this article is to analyze the effects of various forms of exercise on type I and type II interconversions. Possible variables that may increase type II fibers and decrease type I fibers are discussed, and these include high velocity isokinetic contractions; ballistic movements such as bench press throws and sprints. Conversely, a shift from type II to type I fibers may occur under longer duration, higher volume endurance type events. Special care is taken to provide practical applications for both the scientist and the athlete.
Nutrition | 2013
Peter J. Fitschen; Gabriel J. Wilson; Jacob M. Wilson; Kenneth R. Wilund
Muscle loss is common during aging and chronic diseases, such as cancer and acquired immunodeficiency syndrome. Moreover, muscle loss has been correlated with decreased physical function, quality of life, and mortality in these populations. Therefore, interventions to counteract muscle loss in the elderly and clinical populations are needed. Recently, the efficacy of the leucine metabolite, β-hydroxy-β-methylbutyrate (HMB), to maintain muscle mass has been investigated in these populations. Many studies have found increases in lean mass and strength in the elderly and clinical populations when using HMB; however, not all studies have found beneficial effects of HMB supplementation. The present review summarizes published human studies investigating the efficacy of HMB supplementation in the elderly and clinical populations. In addition, the mechanisms by which HMB may exert its effects are summarized and future research directions are suggested.
Journal of The International Society of Sports Nutrition | 2013
Jacob M. Wilson; Peter J. Fitschen; Bill Campbell; Gabriel J. Wilson; Nelo Eidy Zanchi; Lem Taylor; Colin Wilborn; Douglas Kalman; Jeffrey R. Stout; Jay R. Hoffman; Tim Ziegenfuss; Hector Lopez; Richard B. Kreider; Abbie E Smith-Ryan; Jose Antonio
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB’s mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations.
Strength and Conditioning Journal | 2008
Jacob M. Wilson; Gabriel J. Wilson
TAPERING IS A TECHNIQUE OF SYSTEMATICALLY DECREASING TRAINING LOAD TO FACILITATE A PHYSIOLOGIC FITNESS PEAK. THE TAPER IS A COMPLEX TECHNIQUE BECAUSE LOAD CAN BE REDUCED THROUGH THE MANIPULATION OF NUMEROUS VARIABLES, SUCH AS TRAINING INTENSITY, VOLUME, DURATION, AND FREQUENCY. AN EXTENSIVE BODY OF RESEARCH HAS BEEN DEDICATED TO ANALYZING THE OPTIMAL COMBINATION OF THESE VARIABLES. THE PURPOSE OF THIS ARTICLE WAS TO BRIDGE THE GAP BETWEEN RESEARCH AND PRACTICE, AS IT PERTAINS TO THE TAPER.
American Journal of Physiology-endocrinology and Metabolism | 2015
Gabriel J. Wilson; Brittany A. Lennox; Pengxiang She; Emily T. Mirek; Rana J. T. Al Baghdadi; Michael E. Fusakio; Joseph L. Dixon; Gregory C. Henderson; Ronald C. Wek; Tracy G. Anthony
The antileukemic agent asparaginase triggers the amino acid response (AAR) in the liver by activating the eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2). To explore the mechanism by which AAR induction is necessary to mitigate hepatic lipid accumulation and prevent liver dysfunction during continued asparaginase treatment, wild-type and Gcn2 null mice were injected once daily with asparaginase or phosphate buffered saline for up to 14 days. Asparaginase induced mRNA expression of multiple AAR genes and greatly increased circulating concentrations of the metabolic hormone fibroblast growth factor 21 (FGF21) independent of food intake. Loss of Gcn2 precluded mRNA expression and circulating levels of FGF21 and blocked mRNA expression of multiple genes regulating lipid synthesis and metabolism including Fas, Ppara, Pparg, Acadm, and Scd1 in both liver and white adipose tissue. Furthermore, rates of triglyceride export and protein expression of apolipoproteinB-100 were significantly reduced in the livers of Gcn2 null mice treated with asparaginase, providing a mechanistic basis for the increase in hepatic lipid content. Loss of AAR-regulated antioxidant defenses in Gcn2 null livers was signified by reduced Gpx1 gene expression alongside increased lipid peroxidation. Substantial reductions in antithrombin III hepatic expression and activity in the blood of asparaginase-treated Gcn2 null mice indicated liver dysfunction. These results suggest that the ability of the liver to adapt to prolonged asparaginase treatment is influenced by GCN2-directed regulation of FGF21 and oxidative defenses, which, when lost, corresponds with maladaptive effects on lipid metabolism and hemostasis.
Research Quarterly for Exercise and Sport | 2009
Jeffery P. Simons; Jacob M. Wilson; Gabriel J. Wilson; Stephen Theall
We tested expert baseball pitchers for evidence of especial skills at the regulation pitching distance. Seven college pitchers threw indoors to a target placed at 60.5 feet (18.44 m) and four closer and four further distances away. Accuracy at the regulation distance was significantly better than predicted by regression on the nonregulation distances (p < .02), indicating an especial skill effect emerged despite the absence of normal contextual cues. Self-efficacy data failed to support confidence as a mediating factor in especial skill effect. We concluded that cognitive theories fail to fully account for the patterns of observed data, and therefore theoretical explanations of the especial skills must address noncognitive aspects of motor learning and control.
Nutrients | 2012
Gabriel J. Wilson; Christopher J. Moulton; Peter J. Garlick; Tracy G. Anthony; Donald K. Layman
Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced cellular energy, and the extent to which Leu or carbohydrate supplements are able to enhance energy status and prolong the period of muscle anabolism are dose and time-dependent.
Journal of Nutrition | 2017
Layne Norton; Gabriel J. Wilson; Christopher J Moulton; Donald K. Layman
BACKGROUND Protein quantity and quality at a meal affect muscle protein synthesis (MPS); however, long-term effects of protein distribution at individual meals on adult muscle mass remain unknown. OBJECTIVE We used a precise feeding protocol in adult rats to determine if optimizing postmeal MPS response by modifying the meal distribution of protein, and the amino acid leucine (Leu), would affect muscle mass. METHODS Two studies were conducted with the use of male Sprague-Dawley rats (∼300 g) trained to consume 3 meals/d, then assigned to diet treatments with identical macronutrient contents (16% of energy from protein, 54% from carbohydrates, and 30% from fat) but differing in protein quality or meal distribution. Study 1 provided 16% protein at each meal with the use of whey, egg white, soy, or wheat gluten, with Leu concentrations of 10.9%, 8.8%, 7.7%, and 6.8% (wt:wt), respectively. Study 2 used whey protein with 16% protein at each meal [balanced distribution (BD)] or meals with 8%, 8%, and 27% protein [unbalanced distribution (UD)]. MPS and translation factors 4E binding protein 1 (4E-BP1) and ribosomal protein p70S6 (S6K) were determined before and after breakfast meals at 2 and 11 wk. Muscle weights and body composition were measured at 11 wk. RESULTS In study 1, the breakfast meal increased MPS and S6K in whey and egg treatments but not in wheat or soy treatments. Gastrocnemius weight was greater in the whey group (2.20 ± 0.03 g) than the soy group (1.95 ± 0.04 g) (P < 0.05) and was intermediate in the egg and wheat groups. The wheat group had >20% more body fat than the soy, egg, or whey groups (P < 0.05). Study 2, postmeal MPS and translation factors were 30-45% greater in the BD group than the UD group (P < 0.05), resulting in 6% and 11% greater (P < 0.05) gastrocnemius and soleus weights at 11 wk. CONCLUSION These studies show that meal distribution of protein and Leu influences MPS and long-term changes in adult muscle mass.
Journal of Applied Physiology | 2015
Marc A. Tuazon; Taylor R. McConnell; Gabriel J. Wilson; Tracy G. Anthony; Gregory C. Henderson
Precise regulation of hepatic triglyceride (TG) metabolism and secretion is critical for health, and exercise could play a significant role. We compared one session of high-intensity interval exercise (HIIE) vs. continuous exercise (CE) on hepatic TG metabolism. Female and male mice were assigned to CE, HIIE, or sedentary control (CON). HIIE was a 30-min session of 30-s running intervals (30 m/min) interspersed with 60-s walking periods (5 m/min). CE was a distance- and duration-matched run at 13.8 m/min. Hepatic content of TG and TG secretion rates, as well as expression of relevant genes/proteins, were measured at 3 h (day 1) and 28 h (day 2) postexercise. On day 1, hepatic [TG] in CE and HIIE were both elevated vs. CON in both sexes with an approximately twofold greater elevation in HIIE vs. CE in females. In both sexes, hepatic perilipin 2 (PLIN2) protein on day 1 was increased significantly by both exercise types with a significantly greater increase with HIIE than CE, whereas the increase in mRNA reached significance only after HIIE. On day 2 in both sexes the increases in hepatic TG and PLIN2 with exercise declined toward CON levels. Only HIIE on day 2 resulted in reduced hepatic TG secretion by ∼20% in females with no effect in males. Neither exercise modality altered AMPK signaling or microsomal triglyceride transfer protein expression. Females exhibited higher hepatic TG secretion than males in association with different expression levels of related metabolic enzymes. These intensity-dependent and sex-specific alterations following exercise may have implications for sex-based exercise prescription.
Journal of Strength and Conditioning Research | 2017
Matthew H. Sharp; Ryan P. Lowery; Kevin A. Shields; Jason R Lane; Jocelyn L Gray; Jeremy Partl; Daniel W Hayes; Gabriel J. Wilson; Chase Hollmer; Julie R Minivich; Jacob M. Wilson
Abstract Sharp, MH, Lowery, RP, Shields, KA, Lane, JR, Gray, JL, Partl, JM, Hayes, DW, Wilson, GJ, Hollmer, CA, Minivich, JR, and Wilson, JM. The effects of beef, chicken, or whey protein after workout on body composition and muscle performance. J Strength Cond Res 32(8): 2233–2242, 2018—The purpose of this study was to determine the effects of postworkout consumption of beef protein isolate (Beef), hydrolyzed chicken protein (Chx), or whey protein concentrate (WPC), compared with a control on body composition and muscle performance during 8 weeks of resistance training. Forty-one men and women were randomized into 4 groups: WPC (m = 5, f = 5; age [years] = 19 ± 2, height [cm] = 171 ± 10, mass [kg] = 74.60 ± 14.19), Beef (m = 5, f = 5; age [years] = 22 ± 4, height [cm] = 170 ± 7, mass [kg] = 70.13 ± 8.16), Chx (m = 5, f = 6; Age [years] = 21 ± 2, height [cm] = 169 ± 9, mass [kg] = 74.52 ± 13.83), and Maltodextrin (control) (m = 4, f = 6; age [years] = 21 ± 2, height [cm] = 170 ± 9, mass [kg] = 73.18 ± 10.96). Subjects partook in an 8-week periodized resistance training program. Forty-six grams of protein or a control were consumed immediately after training or at similar times on off-days. Dual-energy x-ray absorptiometry was used to determine changes in body composition. Maximum strength was assessed by 1 repetition maximum for bench press (upper body) and deadlift (lower body). Power output was measured using cycle ergometer. Whey protein concentrate (52.48 ± 11.15 to 54.96 ± 11.85 kg), Beef (51.68 ± 7.61 to 54.65 ± 8.67 kg), and Chx (52.97 ± 12.12 to 54.89 ± 13.43 kg) each led to a significant increase in lean body mass compared with baseline (p < 0.0001), whereas the control condition did not (53.14 ± 11.35 to 54.19 ± 10.74 kg). Fat loss was also significantly decreased at 8 weeks compared to baseline for all protein sources (p < 0.0001; WPC: 18.70 ± 7.38 to 17.16 ± 7.18 kg; Beef: 16.43 ± 5.71 to 14.65 ± 5.41 kg; Chx: 17.58 ± 5.57 to 15.87 ± 6.07 kg), but not the control condition (16.29 ± 7.14 to 14.95 ± 7.72 kg). One repetition maximum for both deadlift and bench press was significantly increased for all treatment groups when compared with baseline. No differences in strength were noted between conditions. Overall, the results of this study demonstrate that consuming quality sources of protein from meat or WPC lead to significant benefits in body composition compared with control.