Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Nasri Marzuca-Nassr is active.

Publication


Featured researches published by Gabriel Nasri Marzuca-Nassr.


Analytical Biochemistry | 2016

Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?

Marco Salomão Fortes; Gabriel Nasri Marzuca-Nassr; Kaio Fernando Vitzel; Carlos Hermano da Justa Pinheiro; Philip Newsholme; Rui Curi

The use of Western blot analysis is of great importance in research, and the measurement of housekeeping proteins is commonly used for loading controls. However, Ponceau S staining has been shown to be an alternative to analysis of housekeeping protein levels as loading controls in some conditions. In the current study, housekeeping protein levels were measured in skeletal muscle hypertrophy and streptozotocin-induced diabetes experimental models. The following housekeeping proteins were investigated: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin, α-tubulin, γ-tubulin, and α-actinin. Evidence is presented that Ponceau S is more reliable than housekeeping protein levels for specific protein quantifications in Western blot analysis.


Physiological Reports | 2016

Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats

Gabriel Nasri Marzuca-Nassr; Kaio Fernando Vitzel; Luís Gustavo Oliveira de Sousa; Gilson Murata; Amanda R. Crisma; Carlos Flores Rodrigues Junior; Phablo Abreu; Rosângela Pavan Torres; Jorge Mancini-Filho; Sandro M. Hirabara; Philip Newsholme; Rui Curi

The effects of either eicosapentaenoic (EPA)‐ or docosahexaenoic (DHA)‐rich fish oils on hindlimb suspension (HS)‐induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS. At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross‐sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3‐beta) and protein degradation (atrogin‐1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega‐6/omega‐3 fatty acids and changed protein synthesis‐associated signaling. EPA‐rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p‐Akt, total p70S6K, p‐p70S6K/total p70S6K, p‐4EBP1, p‐GSK3‐beta, p‐ERK2, and total ERK 1/2 proteins. DHA‐rich fish oil attenuated the changes induced by HS on p‐4EBP1 and total ERK1 levels. The effects of EPA‐rich fish oil on protein synthesis signaling were more pronounced. Both EPA‐ and DHA‐rich fish oils did not impact skeletal muscle mass loss induced by non‐inflammatory HS.


Experimental Physiology | 2016

Contractile function recovery in severely injured gastrocnemius muscle of rats treated with either oleic or linoleic acid

Phablo Abreu; Carlos Hermano da Justa Pinheiro; Kaio Fernando Vitzel; Diogo A. A. Vasconcelos; Rosângela Pavan Torres; Marco Salomão Fortes; Gabriel Nasri Marzuca-Nassr; Jorge Mancini-Filho; Sandro M. Hirabara; Rui Curi

What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well‐established model of muscle regeneration after severe laceration. What is the main finding and its importance? We found that linoleic acid increases fibrous tissue deposition and impairs muscle regeneration and recovery of contractile function, whereas oleic acid has the opposite effects in severely injured gastrocnemius muscle, suggesting that linoleic acid has a harmful effect and oleic acid a potential therapeutic effect on muscle regeneration.


Biochemical Journal | 2016

Regulatory principles in metabolism–then and now

Rui Curi; Philip Newsholme; Gabriel Nasri Marzuca-Nassr; Hilton Kenji Takahashi; Sandro M. Hirabara; Vinicius Fernandes Cruzat; Mauricio Krause; Paulo Ivo Homem de Bittencourt

The importance of metabolic pathways for life and the nature of participating reactions have challenged physiologists and biochemists for over a hundred years. Eric Arthur Newsholme contributed many original hypotheses and concepts to the field of metabolic regulation, demonstrating that metabolic pathways have a fundamental thermodynamic structure and that near identical regulatory mechanisms exist in multiple species across the animal kingdom. His work at Oxford University from the 1970s to 1990s was groundbreaking and led to better understanding of development and demise across the lifespan as well as the basis of metabolic disruption responsible for the development of obesity, diabetes and many other conditions. In the present review we describe some of the original work of Eric Newsholme, its relevance to metabolic homoeostasis and disease and application to present state-of-the-art studies, which generate substantial amounts of data that are extremely difficult to interpret without a fundamental understanding of regulatory principles. Erics work is a classical example of how one can unravel very complex problems by considering regulation from a cell, tissue and whole body perspective, thus bringing together metabolic biochemistry, physiology and pathophysiology, opening new avenues that now drive discovery decades thereafter.


Journal of Nutritional Biochemistry | 2017

Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet.

Amanda R. Martins; Amanda R. Crisma; Laureane Nunes Masi; Cátia Lira do Amaral; Gabriel Nasri Marzuca-Nassr; Lucas H.M. Bomfim; Bruno G. Teodoro; André L. Queiroz; Tamires Duarte Afonso Serdan; Rosangela Pavan Torres; Jorge Mancini-Filho; Alice Cristina Rodrigues; Tatiana Carolina Alba-Loureiro; Tania Cristina Pithon-Curi; Renata Gorjão; Leonardo R. Silveira; Rui Curi; Philip Newsholme; Sandro M. Hirabara

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to improve insulin sensitivity and glucose homeostasis in animal models of insulin resistance, but the involved mechanisms still remain unresolved. In this study, we evaluated the effects of fish oil (FO), a source of n-3 PUFAs, on obesity, insulin resistance and muscle mitochondrial function in mice fed a high-fat diet (HFD). C57Bl/6 male mice, 8 weeks old, were divided into four groups: control diet (C), high-fat diet (H), C+FO (CFO) and H+FO (HFO). FO was administered by oral gavage (2 g/kg b.w.), three times a week, starting 4 weeks before diet administration until the end of the experimental protocol. HFD-induced obesity and insulin resistance associated with impaired skeletal muscle mitochondrial function, as indicated by decreased oxygen consumption, tricarboxylic acid cycle intermediate (TCAi) contents (citrate, α-ketoglutarate, malate and oxaloacetate), oxidative phosphorylation protein content and mitochondrial biogenesis. These effects were associated with elevated reactive oxygen species production, decreased PGC1-a transcription and reduced Akt phosphorylation. The changes induced by the HFD were partially attenuated by FO, which decreased obesity and insulin resistance and increased mitochondrial function. In the H group, FO supplementation also improved oxygen consumption; increased TCAi content, and Akt and AMPK phosphorylation; and up-regulated mRNA expression of Gpat1, Pepck, catalase and mitochondrial proteins (Pgc1α, Pparα, Cpt1 and Ucp3). These results suggest that dietary FO attenuates the deleterious effects of the HFD (obesity and insulin resistance) by improving skeletal muscle mitochondrial function.


Nutrients | 2018

Leucine Supplementation Does Not Attenuate Skeletal Muscle Loss during Leg Immobilization in Healthy, Young Men

Evelien M.P. Backx; Astrid M. Horstman; Gabriel Nasri Marzuca-Nassr; Janneau van Kranenburg; Joey S.J. Smeets; Cas J. Fuchs; Anniek Janssen; Lisette C. P. G. M. de Groot; Tim Snijders; Lex B. Verdijk; Luc J. C. van Loon

Background: Short successive periods of physical inactivity occur throughout life and contribute considerably to the age-related loss of skeletal muscle mass. The maintenance of muscle mass during brief periods of disuse is required to prevent functional decline and maintain metabolic health. Objective: To assess whether daily leucine supplementation during a short period of disuse can attenuate subsequent muscle loss in vivo in humans. Methods: Thirty healthy (22 ± 1 y) young males were exposed to a 7-day unilateral knee immobilization intervention by means of a full leg cast with (LEU, n = 15) or without (CON, n = 15) daily leucine supplementation (2.5 g leucine, three times daily). Prior to and directly after immobilization, quadriceps muscle cross-sectional area (computed tomography (CT) scan) and leg strength (one-repetition maximum (1-RM)) were assessed. Furthermore, muscle biopsies were taken in both groups before and after immobilization to assess changes in type I and type II muscle fiber CSA. Results: Quadriceps muscle cross-sectional area (CSA) declined in the CON and LEU groups (p < 0.01), with no differences between the two groups (from 7712 ± 324 to 7287 ± 305 mm2 and from 7643 ± 317 to 7164 ± 328 mm2; p = 0.61, respectively). Leg muscle strength decreased from 56 ± 4 to 53 ± 4 kg in the CON group and from 63 ± 3 to 55 ± 2 kg in the LEU group (main effect of time p < 0.01), with no differences between the groups (p = 0.052). Type I and II muscle fiber size did not change significantly over time, in both groups (p > 0.05). Conclusions: Free leucine supplementation with each of the three main meals (7.5 g/d) does not attenuate the decline of muscle mass and strength during a 7-day limb immobilization intervention.


Archive | 2018

Experimental Model of Skeletal Muscle Laceration in Rats

Phablo Abreu; Gabriel Nasri Marzuca-Nassr; Sandro M. Hirabara; Rui Curi

This is a modified experimental model previously developed in mouse to study skeletal muscle laceration in rats. All experimental procedures are performed during the light period, including anesthesia and surgery. The animals are randomly distributed into control and injured groups prior to the procedure. This experimental model can be used to investigate skeletal muscle laceration repair.


Archive | 2018

In Vivo Electrical Stimulation for the Assessment of Skeletal Muscle Contractile Function in Murine Models

Kaio Fernando Vitzel; Marco A. Fortes; Gabriel Nasri Marzuca-Nassr; Maria V. M. Scervino; Carlos Hermano da Justa Pinheiro; Leonardo R. Silveira; Rui Curi

Skeletal muscle electrical stimulation is commonly used for clinical purposes, assisting recovery, preservation, or even improvement of muscle mass and function in healthy and pathological conditions. Additionally, it is a useful research tool for evaluation of skeletal muscle contractile function. It may be applied in vitro, using cell culture or isolated fibers/muscles, and in vivo, using human subjects or animal models (neuromuscular electrical stimulation - NMES). This chapter focuses on the electrical stimulation of the sciatic nerve as a research method for evaluation of the contractile properties of murine hind limb muscles. Variations of this protocol allow for the assessment of muscle force, fatigue resistance, contraction and relaxation times, and can be used as a model of contraction-induced muscle injury, reactive oxygen species production, and muscle adaptation to contractile activity.


Nutrients | 2017

Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

Gabriel Nasri Marzuca-Nassr; Gilson Murata; Amanda R. Martins; Kaio Fernando Vitzel; Amanda R. Crisma; Rosângela Pavan Torres; Jorge Mancini-Filho; Jing X. Kang; Rui Curi

The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001). Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.


Frontiers in Physiology | 2017

Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

Marco Salomão Fortes; Maria V. M. Scervino; Gabriel Nasri Marzuca-Nassr; Kaio Fernando Vitzel; Carlos Hermano da Justa Pinheiro; Rui Curi

Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.

Collaboration


Dive into the Gabriel Nasri Marzuca-Nassr's collaboration.

Top Co-Authors

Avatar

Rui Curi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phablo Abreu

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge