Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Ortega is active.

Publication


Featured researches published by Gabriel Ortega.


Journal of Physical Chemistry B | 2012

Hydration Dynamics of a Halophilic Protein in Folded and Unfolded States

Johan Qvist; Gabriel Ortega; Xavier Tadeo; Oscar Millet; Bertil Halle

Proteins from halophilic microorganisms thriving at high salinity have an excess of charged carboxylate groups, and it is widely believed that this gives rise to an exceptionally strong hydration that stabilizes these proteins against unfolding and aggregation. Here, we examine this hypothesis by characterizing the hydration dynamics of a halophilic model protein with frequency- and temperature-dependent (17)O magnetic relaxation. The halophilic protein Kx6E was constructed by replacing six lysine residues with glutamate residues in the IgG binding domain of protein L. We also studied the unfolded form of Kx6E in the absence of salt. We find that the hydration dynamics of Kx6E does not differ from protein L or from other previously studied mesophilic proteins. This finding challenges the hypothesis of exceptional hydration for halophilic proteins. The unfolded form of Kx6E is found to be expanded, with a weaker dynamical perturbation of the hydration water than for folded proteins.


Scientific Reports | 2011

Halophilic enzyme activation induced by salts

Gabriel Ortega; Ana Laín; Xavier Tadeo; Blanca López-Méndez; David Castaño; Oscar Millet

Halophilic archea (halobacteriae) thrive in hypersaline environments, avoiding osmotic shock by increasing the ion concentration of their cytoplasm by up to 3–6 M. To remain folded and active, their constitutive proteins have evolved towards a biased amino acid composition. High salt concentration affects catalytic activity in an enzyme-dependent way and a unified molecular mechanism remains elusive. Here, we have investigated a DNA ligase from Haloferax volcanii (Hv LigN) to show that K+ triggers catalytic activity by preferentially stabilising a specific conformation in the reaction coordinate. Sodium ions, in turn, do not populate such isoform and the enzyme remains inactive in the presence of this co-solute. Our results show that the halophilic amino acid signature enhances the enzymes thermodynamic stability, with an indirect effect on its catalytic activity. This model has been successfully applied to reengineer Hv LigN into an enzyme that is catalytically active in the presence of NaCl.


Journal of the American Chemical Society | 2012

Carbohydrate affinity for the glucose-galactose binding protein is regulated by allosteric domain motions.

Gabriel Ortega; David Castaño; Tammo Diercks; Oscar Millet

Protein function, structure, and dynamics are intricately correlated, but studies on structure-activity relationships are still only rarely complemented by a detailed analysis of dynamics related to function (functional dynamics). Here, we have applied NMR to investigate the functional dynamics in two homologous periplasmic sugar binding proteins with bidomain composition: Escherichia coli glucose/galactose (GGBP) and ribose (RBP) binding proteins. In contrast to their structural and functional similarity, we observe a remarkable difference in functional dynamics: For RBP, the absence of segmental motions allows only for isolated structural adaptations upon carbohydrate binding in line with an induced fit mechanism; on the other hand, GGBP shows extensive segmental mobility in both apo and holo states, enabling selection of the most favorable conformation upon carbohydrate binding in line with a population shift mechanism. Collective segmental motions are controlled by the hinge composition: by swapping two identified key residues between RBP and GGBP we also interchange their segmental hinge mobility, and the doubly mutated GGBP* no longer experiences changes in conformational entropy upon ligand binding while the complementary RBP* shows the segmental dynamics observed in wild-type GGBP. Most importantly, the segmental interdomain dynamics always increase the apparent substrate affinity and thus, are functional, underscoring the allosteric control that the hinge region exerts on ligand binding.


Biochemistry | 2009

Uroporphyrinogen III synthase mutations related to congenital erythropoietic porphyria identify a key helix for protein stability.

Fortian A; David Castaño; Gabriel Ortega; Ana Laín; Miquel Pons; Oscar Millet

In the present study we have investigated deleterious mutants in the uroporphyrinogen III synthase (UROIIIS) that are related to the congenital erythropoietic porphyria (CEP). The 25 missense mutants found in CEP patients have been cloned, expressed, and purified. Their enzymatic activities have been measured relative to wild-type UROIIIS activity. All mutants retain measurable activity, consistent with the recessive character of the disease. Most of the mutants with a significant decrease in activity involve residues likely associated in binding. However, other mutants are fully active, indicating that different mechanisms may contribute to enzyme missfunction. UROIIIS is a thermolabile enzyme undergoing irreversible denaturation. The unfolding kinetics of wild-type UROIIIS and the suite of mutants have been monitored by circular dichroism. This analysis allowed the identification of a helical region in the molecule, essential to retain the kinetic stability of the folded conformation. C73R is found in one-third of CEP patients, and Cys73 is part of this helix. The integrated analysis of the enzymatic activity and kinetic stability data is used to gain insight in the relationship between defects in UROIIIS sequence and CEP.


Chemistry & Biology | 2015

Halophilic Protein Adaptation Results from Synergistic Residue-Ion Interactions in the Folded and Unfolded States

Gabriel Ortega; Tammo Diercks; Oscar Millet

Halophilic organisms thrive in environments with extreme salt concentrations and have adapted by allowing molar quantities of cosolutes, mainly KCl, to accumulate in their cytoplasm. To cope with this high intracellular salinity, halophilic organisms modified the chemical composition of their proteins to enrich their surface with acidic and short polar side chains, while lysines and bulky hydrophobic residues got depleted. We have emulated the evolutionary process of haloadaptation with natural and designed halophilic polypeptides and applied novel nuclear magnetic resonance (NMR) methodology to study the different mechanisms contributing to protein haloadaptation at a per residue level. Our analysis of an extensive set of NMR observables, determined over several proteins, allowed us to disentangle the synergistic contributions of protein haloadaptation: cation exclusion and electrostatic repulsion between negatively charged residues destabilize the denatured state ensemble while cumulative weak cation-protein interactions stabilize the folded conformations.


Journal of Biological Chemistry | 2014

The Mitochondrial Intermembrane Space Oxireductase Mia40 Funnels the Oxidative Folding Pathway of the Cytochrome c Oxidase Assembly Protein Cox19

Hugo Fraga; Joan-Josep Bech-Serra; Francesc Canals; Gabriel Ortega; Oscar Millet; Salvador Ventura

Background: Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second CX9C motif. Results: The chaperone catalysis renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. Conclusion: The role of Mia40 is funnelling an already sequentially encoded, but rough, substrate folding landscape. Significance: These results provide a rationale for the substrate promiscuity of the chaperone Mia40. Mia40-catalyzed disulfide formation drives the import of many proteins into the mitochondria. Here we characterize the oxidative folding of Cox19, a twin CX9C Mia40 substrate. Cox19 oxidation is extremely slow, explaining the persistence of import-competent reduced species in the cytosol. Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second helical CX9C motif and the subsequent oxidation of the inner disulfide bond. This renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. The same intermediate dominates the pathway in the absence of Mia40, and chemical induction of an α-helical structure by trifluoroethanol suffices to accelerate productive folding and mimic the Mia40 folding template mechanism. The Mia40 role is to funnel a rough folding landscape, skipping the accumulation of kinetic traps, providing a rationale for the promiscuity of Mia40.


ACS Chemical Biology | 2016

Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations

Luca Unione; Gabriel Ortega; Alvaro Mallagaray; Francisco Corzana; Javier Pérez-Castells; Ángeles Canales; Jesús Jiménez-Barbero; Oscar Millet

Protein dynamics related to function can nowadays be structurally well characterized (i.e., instances obtained by high resolution structures), but they are still ill-defined energetically, and the energy landscapes are only accessible computationally. This is the case for glucose-galactose binding protein (GGBP), where the crystal structures of the apo and holo states provide structural information for the domain rearrangement upon ligand binding, while the time scale and the energetic determinants for such concerted dynamics have been so far elusive. Here, we use GGBP as a paradigm to define a functional conformational landscape, both structurally and energetically, by using an innovative combination of paramagnetic NMR experiments and MD simulations. Anisotropic NMR parameters induced by self-alignment of paramagnetic metal ions was used to characterize the ensemble of conformations adopted by the protein in solution while the rate of interconversion between conformations was elucidated by long molecular dynamics simulation on two states of GGBP, the closed-liganded (holo_cl) and open-unloaded (apo_op) states. Our results demonstrate that, in its apo state, the protein coexists between open-like (68%) and closed-like (32%) conformations, with an exchange rate around 25 ns. Despite such conformational heterogeneity, the presence of the ligand is the ultimate driving force to unbalance the equilibrium toward the holo_cl form, in a mechanism largely governed by a conformational selection mechanism.


Advances in Protein Chemistry | 2013

Protein functional dynamics in multiple timescales as studied by NMR spectroscopy.

Gabriel Ortega; Miquel Pons; Oscar Millet

Protein functional dynamics are defined as the atomic thermal fluctuations or the segmental motions that are essential for the function of the biomolecule. NMR is a very versatile technique that allows obtaining quantitative information from these processes at atomic resolution. This review is focused on the use of 15N spin relaxation methods to study functional dynamics although the connections with other NMR methods and biophysical techniques will be briefly mentioned. In the first part of the chapter, methodological aspects will be considered, while a set of selected cases will be described in more detail in the second part.


Langmuir | 2017

Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry

Philippe Dauphin-Ducharme; Netzahualcóyotl Arroyo-Currás; Martin Kurnik; Gabriel Ortega; Hui Li; Kevin W. Plaxco

The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.


Journal of Virology | 2017

In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding

Hasier Eraña; Natalia Fernández-Borges; Saioa R. Elezgarai; Chafik Harrathi; Jorge M. Charco; Francesca Chianini; Mark P. Dagleish; Gabriel Ortega; Oscar Millet; Joaquín Castilla

ABSTRACT Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc. Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP. IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.

Collaboration


Dive into the Gabriel Ortega's collaboration.

Top Co-Authors

Avatar

Oscar Millet

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Kurnik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tod E. Kippin

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge