Gabriel S. Bassi
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriel S. Bassi.
Experimental Neurology | 2008
Renato Leonardo Freitas; Gabriel S. Bassi; Ana M. de Oliveira; Norberto Cysne Coimbra
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and humans. The aim of this study was to assess the involvement of the dorsal raphe nucleus (DRN) in the post-ictal antinociception. The second aim was to study the role of serotonergic intrinsic mechanisms of the DRN in this hypo-algesic phenomenon. Pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist, was peripherally used to induce tonic-clonic seizures in Wistar rats. The nociceptive threshold was measured by the tail-flick test. Neurochemical lesions of the DRN, performed with microinjection of ibotenic acid (1.0 microg/0.2 microL), caused a significant decrease of tonic-clonic seizure-induced antinociception, suggesting the involvement of this nucleus in this antinociceptive process. Microinjections of methysergide (1.0 and 5.0 microg/0.2 microL), a non-selective serotonergic receptor antagonist, into DRN caused a significant decrease in the post-ictal antinociception in seizing animals, compared to controls, in all post-ictal periods presently studied. These findings were corroborated by microinjections of ketanserin (at 1.0 and 5.0 microg/0.2 microL) into DRN. Ketanserin is an antagonist with large affinity for 5-HT(2A/2C) serotonergic receptors, which, in this case, caused a significant decrease in the tail-flick latencies in seizing animals, compared to controls after the first 20 min following tonic-clonic convulsive reactions. These results indicate that serotonergic neurotransmission of the DRN neuronal clusters is involved in the organization of the post-ictal hypo-algesia. The 5-HT(2A/2C) receptors of DRN neurons seem to be critically involved in the increase of nociceptive thresholds following tonic-clonic seizures.
Pharmacology, Biochemistry and Behavior | 2004
Renato de Freitas; Rithiele Cristina de Oliveira; A.D. Carvalho; Tatiana Tocchini Felippotti; Gabriel S. Bassi; Daoud Hibrahim Elias-Filho; Norberto Cysne Coimbra
The blockade of GABA-mediated Cl(-) influx with pentylenetetrazol (PTZ) was used in the present work to induce seizures in animals. The neurotransmission in the postictal period has been the focus of many studies, and there is evidence suggesting antinociceptive mechanisms following tonic-clonic seizures in both animals and men. The aim of this work was to study the involvement of acetylcholine in the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). Analgesia was measured by the tail-flick test in eight albino Wistar rats per group. Convulsions were followed by significant increases in tail-flick latencies (TFLs) at least for 120 min of the postictal period. Peripheral administration of atropine (0.25, 1 and 4 mg/kg) caused a significant dose-dependent decrease in the TFL in seizing animals, as compared to controls. These data were corroborated by peripheral administration of mecamylamine, a nicotinic cholinergic receptor blocker, at the same doses (0.25, 1 and 4 mg/kg) used for the muscarinic cholinergic receptor antagonist. The recruitment of the muscarinic receptor was made 10 min postconvulsions and in subsequent periods of postictal analgesia, whereas the involvement of the nicotinic cholinergic receptor was implicated only after 30 min postseizures. The cholinergic antagonists caused a minimal reduction in body temperature, but did not impair baseline TFL, spontaneous exploration or motor coordination in the rotarod test at the maximal dose of 4 mg/kg. These results indicate that acetylcholine may be involved as a neurotransmitter in postictal analgesia.
Brain Behavior and Immunity | 2015
Gabriel S. Bassi; Fernanda Brognara; Jaci Airton Castania; Jhimmy Talbot; Thiago M. Cunha; Fernando Q. Cunha; Luis Ulloa; Alexandre Kanashiro; Daniel Penteado Martins Dias; Helio Cesar Salgado
The baroreflex is a critical physiological mechanism controlling cardiovascular function by modulating both the sympathetic and parasympathetic activities. Here, we report that electrical activation of the baroreflex attenuates joint inflammation in experimental arthritis induced by the administration of zymosan into the femorotibial cavity. Baroreflex activation combined with lumbar sympathectomy, adrenalectomy, celiac subdiaphragmatic vagotomy or splenectomy dissected the mechanisms involved in the inflammatory modulation, highlighting the role played by sympathetic inhibition in the attenuation of joint inflammation. From the immunological standpoint, baroreflex activation attenuates neutrophil migration and the synovial levels of inflammatory cytokines including TNF, IL-1β and IL-6, but does not affect the levels of the anti-inflammatory cytokine IL-10. The anti-inflammatory effects of the baroreflex system are not mediated by IL-10, the vagus nerve, adrenal glands or the spleen, but by the inhibition of the sympathetic drive to the knee. These results reveal a novel physiological neuronal network controlling peripheral local inflammation.
Journal of Natural Products | 2016
Marcelo Franchin; Pedro Luiz Rosalen; Marcos Guilherme da Cunha; Rangel L. Silva; David F. Colón; Gabriel S. Bassi; Severino Matias de Alencar; Masaharu Ikegaki; José C. Alves-Filho; Fernando Q. Cunha; John A. Beutler; Thiago M. Cunha
Chemical compounds belonging to the class of coumarins have promising anti-inflammatory potential. Cinnamoyloxy-mammeisin (CNM) is a 4-phenylcoumarin that can be isolated from Brazilian geopropolis. To our knowledge, its anti-inflammatory activity has never been studied. Therefore, the present study investigated the anti-inflammatory activity of CNM and elucidated its mechanism of action on isolated macrophages. Pretreatment with CNM reduced neutrophil migration into the peritoneal and joint cavity of mice. Likewise, CNM reduced the in vitro and in vivo release of TNF-α and CXCL2/MIP-2. Regarding the possible molecular mechanism of action, CNM reduced the phosphorylation of proteins ERK 1/2, JNK, p38 MAPK, and AP-1 (subunit c-jun) in PG-stimulated macrophages. Pretreatment with CNM also reduced NF-κB activation in RAW 264.7 macrophages stably expressing the NF-κB-luciferase reporter gene. On the other hand, it did not alter IκBα degradation or nuclear translocation of p65. Thus, the results of this study demonstrate promising anti-inflammatory activity of CNM and provide an explanation of its mechanism of action in macrophages via inhibition of MAPK signaling, AP-1, and NF-κB.
Basic & Clinical Pharmacology & Toxicology | 2016
Alexandre Kanashiro; Jhimmy Talbot; Raphael S. Peres; Larissa G. Pinto; Gabriel S. Bassi; Thiago M. Cunha; Fernando Q. Cunha
The cholinergic anti‐inflammatory pathway (CAP) is a complex neuroimmune mechanism triggered by the central nervous system to regulate peripheral inflammatory responses. Understanding the role of CAP in the pathogenesis of rheumatoid arthritis (RA) could help develop new therapeutic strategies for this disease. Therefore, we investigated the participation of this neuroimmune pathway on the progression of experimental arthritis. Using antigen‐induced arthritis (AIA) model, we investigated in mice the effects of vagotomy or the pharmacological treatments with hexamethonium (peripheral nicotinic receptor antagonist), methylatropine (peripheral muscarinic receptor antagonist) or neostigmine (peripheral acetylcholinesterase inhibitor) on AIA progression. Unilateral cervical vagotomy was performed 1 week before the immunization protocol with methylated bovine serum albumin (mBSA), while drug administration was conducted during the period of immunization. On day 21, 6 hr after the challenge with mBSA injection in the femur–tibial joint, the local neutrophil migration and articular mechanical hyperalgesia were assessed. Herein, we observed that vagotomy or blockade of peripheral nicotinic (but not muscarinic) receptors exacerbated the clinical parameters of this disease. Moreover, peripheral acetylcholinesterase inhibition by neostigmine treatment promoted a reduction of neutrophil recruitment in the knee joint and articular hyperalgesia. Our results demonstrated that peripheral activation of CAP modulates experimental arthritis, providing a pre‐clinical evidence of a potential therapeutic strategy for RA.
Scientific Reports | 2016
Morena Brazil Sant’Anna; Ricardo Kusuda; Tiago A. Bozzo; Gabriel S. Bassi; José C. Alves-Filho; Fernando Q. Cunha; Sérgio H. Ferreira; Guilherme R. Souza; Thiago M. Cunha
Peripheral neuropathic pain is a consequence of an injury/disease of the peripheral nerves. The mechanisms involved in its pathophysiology are not entirely understood. To better understand the mechanisms involved in the development of peripheral nerve injury-induced neuropathic pain, more experimental models are required. Here, we developed a novel peripheral neuropathic pain model in mice by using a minimally invasive surgery and medial plantar nerve ligation (MPNL). After MPNL, mechanical allodynia was established, and mice quickly recovered from the surgery without any significant motor impairment. MPNL causes an increased expression of ATF-3 in the sensory neurons. At 14 days after surgery, gabapentin was capable of reversing the mechanical allodynia, whereas anti-inflammatory drugs and opioids were ineffective. MPNL-induced neuropathic pain was mediated by glial cells activation and the production of TNF-α and IL-6 in the spinal cord. These results indicate MPNL as a reasonable animal model for the study of peripheral neuropathic pain, presenting analgesic pharmacological predictivity to clinically used drugs. The results also showed molecular phenotypic changes similar to other peripheral neuropathic pain models, with the advantage of a lack of motor impairment. These features indicate that MPNL might be more appropriate for the study of neuropathic pain than classical models.
Revista Brasileira de Psiquiatria | 2017
Norberto Cysne Coimbra; Tatiana Paschoalin-Maurin; Gabriel S. Bassi; Alexandre Kanashiro; Audrey Francisco Biagioni; Tatiana Tocchini Felippotti; Daoud Hibrahim Elias-Filho; Joyce Mendes-Gomes; Jade P. Cysne-Coimbra; Rafael Carvalho Almada; Bruno Lobão-Soares
Objective: To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. Methods: PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors’ research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. Results: The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Conclusions: Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.
Naunyn-schmiedebergs Archives of Pharmacology | 2016
Gabriel S. Bassi; David do C. Malvar; Thiago M. Cunha; Fernando Q. Cunha; Alexandre Kanashiro
Recent studies have demonstrated that the central nervous system controls inflammatory responses by activating complex efferent neuroimmune pathways. The present study was designed to evaluate the role that central gamma-aminobutyric acid type B (GABA-B) receptor plays in neutrophil migration in a murine model of zymosan-induced arthritis by using different pharmacological tools. We observed that intrathecal administration of baclofen, a selective GABA-B agonist, exacerbated the inflammatory response in the knee after zymosan administration characterized by an increase in the neutrophil recruitment and knee joint edema, whereas saclofen, a GABA-B antagonist, exerted the opposite effect. Intrathecal pretreatment of the animals with SB203580 (an inhibitor of p38 mitogen-activated protein kinase) blocked the pro-inflammatory effect of baclofen. On the other hand, systemic administration of guanethidine, a sympatholytic drug that inhibits catecholamine release, and nadolol, a beta-adrenergic receptor antagonist, reversed the effect of saclofen. Moreover, saclofen suppressed the release of the pro-inflammatory cytokines into the knee joint (ELISA) and pain-related behaviors (open field test). Since the anti-inflammatory effect of saclofen depends on the sympathetic nervous system integrity, we observed that isoproterenol, a beta-adrenergic receptor agonist, mimics the central GABA-B blockade decreasing knee joint neutrophil recruitment. Together, these results demonstrate that the pharmacological manipulation of spinal GABAergic transmission aids control of neutrophil migration to the inflamed joint by modulating the activation of the knee joint-innervating sympathetic terminal fibers through a mechanism dependent on peripheral beta-adrenergic receptors and central components, such as p38 MAPK.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2018
Gabriel S. Bassi; Luis Ulloa; Victor Rodrigues Santos; Flavio Del Vecchio; Polianna Delfino-Pereira; Gerson Jhonatan Rodrigues; Jaci Airton Castania; Fernando Q. Cunha; Helio Cesar Salgado; Thiago M. Cunha; Norberto Garcia-Cairasco; Alexandre Kanashiro
ABSTRACT The neuronal control of the immune system is fundamental to the development of new therapeutic strategies for inflammatory disorders. Recent studies reported that afferent vagal stimulation attenuates peripheral inflammation by activating specific sympathetic central and peripheral networks, but only few subcortical brain areas were investigated. In the present study, we report that afferent vagal stimulation also activates specific cortical areas, as the parietal and cingulate cortex. Since these cortical structures innervate sympathetic‐related areas, we investigate whether electrical stimulation of parietal cortex can attenuate knee joint inflammation in non‐anesthetized rats. Our results show that cortical stimulation in rats increased sympathetic activity and improved joint inflammatory parameters, such as local neutrophil infiltration and pro‐inflammatory cytokine levels, without causing behavioral disturbance, brain epileptiform activity or neural damage. In addition, we superposed the areas activated by afferent vagal or cortical stimulation to map common central structures to depict a brain immunological homunculus that can allow novel therapeutic approaches against inflammatory joint diseases, such as rheumatoid arthritis. HIGHLIGHTSAfferent vagus nerve stimulation activates subcortical and cortical brain areas.Cortical electrical stimulation (CES) activates similar subcortical and cortical brain areas.CES and Aff VNS reduced joint inflammation.CES does not cause behavioral disturbance, epileptiform activity or neural damage.
Fundamental & Clinical Pharmacology | 2018
Alexandre Kanashiro; Marcelo Franchin; Gabriel S. Bassi; Dênis Augusto Reis Santana; Thiago M. Cunha; Fernando Q. Cunha; Luis Ulloa; Gerson Jonathan Rodrigues
The central nervous system controls the innate immunity by modulating efferent neuronal networks. Recently, we have reported that central brain stimulation inhibits inflammatory responses. In the present study, we investigate whether spinal p38 mitogen‐activated protein kinase (MAPK) affects joint inflammation in experimental arthritis. Firstly, we observed that intra‐articular administration of zymosan in mice induces the phosphorylation of the spinal cord p38 MAPK. In addition, we demonstrated that spinal p38 MAPK inhibition with intrathecal injection of SB203580, a conventional and well‐characterized inhibitor, prevents knee joint neutrophil recruitment, edema formation, experimental score and cytokine production. This local anti‐inflammatory effect was completely abolished with chemical sympathectomy (guanethidine) and beta‐adrenergic receptors blockade (nadolol). In conclusion, our results suggest that pharmacological strategies involving the modulation of spinal p38 MAPK circuit can prevent joint inflammation via sympathetic networks and beta‐adrenoceptors activation.