Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Schlenstedt is active.

Publication


Featured researches published by Gabriel Schlenstedt.


The EMBO Journal | 1997

Yrb4p, a yeast Ran–GTP‐binding protein involved in import of ribosomal protein L25 into the nucleus

Gabriel Schlenstedt; E. Smirnova; R. Deane; J. Solsbacher; U. Kutay; Dirk Görlich; H. Ponstingl; F. R. Bischoff

Gsp1p, the essential yeast Ran homologue, is a key regulator of transport across the nuclear pore complex (NPC). We report the identification of Yrb4p, a novel Gsp1p binding protein. The 123 kDa protein was isolated from Saccharomyces cerevisiae cells and found to be related to importin‐β, the mediator of nuclear localization signal (NLS)‐dependent import into the nucleus, and to Pse1p. Like importin‐β, Yrb4p and Pse1p specifically bind to Gsp1p–GTP, protecting it from GTP hydrolysis and nucleotide exchange. The GTPase block of Gsp1p complexed to Yrb4p or Pse1p is released by Yrb1p, which contains a Gsp1p binding domain distinct from that of Yrb4p. This might reflect an in vivo function for Yrb1p. Cells disrupted for YRB4 are defective in nuclear import of ribosomal protein L25, but show no defect in the import of proteins containing classical NLSs. Expression of a Yrb4p mutant deficient in Gsp1p‐binding is dominant‐lethal and blocks bidirectional traffic across the NPC in wild‐type cells. L25 binds to Yrb4p and Pse1p and is released by Gsp1p–GTP. Consistent with its putative role as an import receptor for L25‐like proteins, Yrb4p localizes to the cytoplasm, the nucleoplasm and the NPC.


Molecular and Cellular Biology | 1998

Cse1p Is Involved in Export of Yeast Importin α from the Nucleus

Jens Solsbacher; Patrick Maurer; F. Ralf Bischoff; Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


Molecular and Cellular Biology | 2000

Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha.

Jens Solsbacher; Patrick Maurer; Frank Vogel; Gabriel Schlenstedt

ABSTRACT Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin α and importin β. Srp1p, the Saccharomyces cerevisiae homologue of importin α, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin α-importin and β and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin β) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin α-importin β complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.


Journal of Biological Chemistry | 2004

Asr1p, a Novel Yeast Ring/PHD Finger Protein, Signals Alcohol Stress to the Nucleus

Christian Betz; Gabriel Schlenstedt; Susanne M. Bailer

During fermentation, yeast cells are exposed to increasing amounts of alcohol, which is stressful and affects both growth and viability. On the molecular level, numerous aspects of alcohol stress signaling remain unresolved. We have identified a novel yeast Ring/PHD finger protein that constitutively shuttles between nucleus and cytoplasm but accumulates in the nucleus upon exposure to ethanol, 2-propanol, or 1-butanol. Subcellular localization of this protein is not altered by osmotic, oxidative, or heat stress or during nitrogen or glucose starvation. Because of its exclusive sensitivity to environmental alcohol, the protein was called Asr1p for Alcohol Sensitive Ring/PHD finger 1 protein. Nuclear accumulation of Asr1p is rapid, reversible, and requires a functional Ran/Gsp1p gradient. Asr1p contains two N terminally located leucine-rich nuclear export sequences (NES) required for nuclear export. Consistently, it accumulates in the nucleus of xpo1-1 cells at restrictive temperature and forms a trimeric complex with the exportin Xpo1p and Ran-GTP. Deletion of ASR1 leads to sensitivity in growth on medium containing alcohol or detergent, consistent with a function of Asr1p in alcohol-related signaling. Asr1p is the first reported protein that changes its subcellular localization specifically upon exposure to alcohol and therefore represents a key element in the analysis of alcohol-responsive signaling.


FEBS Letters | 2010

Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

Yiming Chang; Gabriel Schlenstedt; Veit Flockerzi; Andreas Beck

Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP‐like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features.


eLife | 2014

A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly

Sabina Schütz; Ute Fischer; Martin Altvater; Purnima Nerurkar; Cohue Peña; Michaela Gerber; Yiming Chang; Stefanie Caesar; Olga T. Schubert; Gabriel Schlenstedt; Vikram Govind Panse

Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI: http://dx.doi.org/10.7554/eLife.03473.001


Molecular Biology of the Cell | 2010

Yeast Mpk1 Cell Wall Integrity Mitogen-activated Protein Kinase Regulates Nucleocytoplasmic Shuttling of the Swi6 Transcriptional Regulator

Ki-Young Kim; Andrew W. Truman; Stefanie Caesar; Gabriel Schlenstedt; David E. Levin

Activated Mpk1 MAPK regulates Swi6 nucleocytoplasmic shuttling in a bi-phasic manner. First, it recruits Swi6 to the nucleus non-catalytically by forming a nuclear Mpk1/Swi4 complex to initiate cell wall stress transcription. Then, it phosphorylates Swi6 to prevent further nuclear entry, resulting in its relocalization to the cytoplasm.


Journal of Molecular Biology | 2008

Classical NLS Proteins from Saccharomyces cerevisiae

Silvia Hahn; Patrick Maurer; Stefanie Caesar; Gabriel Schlenstedt

Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin alpha (Impalpha), which possesses the cNLS binding site, and importin beta (Impbeta), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impalpha and Impbeta mutants, direct binding to purified Impalpha, and stimulation of this binding by Impbeta. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impalpha. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/alpha/beta complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impalpha binding. Impbeta enhances the affinity of Impalpha for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impalpha results from a faster association in the presence of Impbeta, whereas the dissociation rate is unaffected by Impbeta. This implies that, after entry into the nucleus, the release of Impbeta by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impalpha subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impalpha in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.


The EMBO Journal | 2012

Sumoylation regulates Kap114-mediated nuclear transport

Ute Rothenbusch; Marc Sawatzki; Yiming Chang; Stefanie Caesar; Gabriel Schlenstedt

The nuclear import receptor Kap114 carries transcription factors and other cargos across nuclear pores into the nucleus. Here we show that yeast Kap114 is modified by SUMO (small ubiquitin‐related modifier) and that sumoylation is required for Kap114‐mediated nuclear import. Among the four known SUMO‐specific E3 ligases in yeast, Mms21 is the preferred E3 enzyme responsible for the covalent attachment of SUMO to the Kap114 protein. Kap114 is sumoylated on lysine residue 909, which is part of a ΨKxD/E sumoylation consensus motif. Kap114 containing a lysine‐to‐arginine point mutation at position 909 mislocalizes to the nucleus and is defective in promoting nuclear import. Similarly, mutants defective in sumoylation or desumoylation specifically accumulate Kap114 in the nucleus and are blocked in import of Kap114 cargos. Ran–GTP is not sufficient to disassemble Kap114/cargo complexes, which necessitates additional cargo release mechanisms in the nucleus. Remarkably, sumoylation of Kap114 greatly stimulates cargo dissociation in vitro. We propose that sumoylation occurs at the site of Kap114 cargo function and that SUMO is a cargo release factor involved in intranuclear targeting.


European Journal of Cell Biology | 2004

The histones H2A/H2B and H3/H4 are imported into the yeast nucleus by different mechanisms.

Markus Greiner; Stefanie Caesar; Gabriel Schlenstedt

Proteins are imported from the cytoplasm into the nucleus by importin beta-related transport receptors. The yeast Saccharomyces cerevisiae contains ten of these importins, but only two of them are essential. After transfer through the nuclear pore, importins release their cargo upon binding to the Ran GTPase, the key regulator of nuclear transport. We investigated the import of the core histones in yeast and found that four importins are involved. The essential Pse1p and the nonessential importins Kap114p, Kap104p, and Yrb4p/Kap123p specifically bind to histones H2A and H2B. Release of H2 histones from importins requires Ran-GTP and DNA simultaneously suggesting a function of the importins in intranuclear targeting. H3 and H4 associate mainly with Pse1p and the dissociation requires Ran but not DNA, which points to a different import mechanism. Import of green fluorescent protein fusions to H2A and H2B requires primarily Pse1p and Kap114p, whereas Yrb4p plays an auxiliary role. Pse1p is predominantly necessary for nuclear uptake of H3 and H4, while Kap104p and Yrb4p also support import. We conclude from our in vivo and in vitro experiments that import of the essential histones is mediated mainly by the essential importin Pse1p, while the non-essential Kap114p functions in a parallel import pathway for H2A and H2B.

Collaboration


Dive into the Gabriel Schlenstedt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrin Stade

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge