Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Singer is active.

Publication


Featured researches published by Gabriel Singer.


Applied and Environmental Microbiology | 2007

Biophysical controls on community succession in stream biofilms.

Katharina Besemer; Gabriel Singer; Romana Limberger; Ann-Kathrin Chlup; Gerald Hochedlinger; Iris Hödl; Christian Baranyi; Tom J. Battin

ABSTRACT Biofilm formation is controlled by an array of coupled physical, chemical, and biotic processes. Despite the ecological relevance of microbial biofilms, their community formation and succession remain poorly understood. We investigated the effect of flow velocity, as the major physical force in stream ecosystems, on biofilm community succession (as continuous shifts in community composition) in microcosms under laminar, intermediate, and turbulent flow. Flow clearly shaped the development of biofilm architecture and community composition, as revealed by microscopic investigation, denaturing gradient gel electrophoresis (DGGE) analysis, and sequencing. While biofilm growth patterns were undirected under laminar flow, they were clearly directed into ridges and conspicuous streamers under turbulent flow. A total of 51 biofilm DGGE bands were detected; the average number ranged from 13 to 16. Successional trajectories diverged from an initial community that was common in all flow treatments and increasingly converged as biofilms matured. We suggest that this developmental pattern was primarily driven by algae, which, as “ecosystem engineers,” modulate their microenvironment to create similar architectures and flow conditions in all treatments and thereby reduce the physical effect of flow on biofilms. Our results thus suggest a shift from a predominantly physical control to coupled biophysical controls on bacterial community succession in stream biofilms.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Headwaters are critical reservoirs of microbial diversity for fluvial networks

Katharina Besemer; Gabriel Singer; Christopher Quince; Enrico Bertuzzo; William T. Sloan; Tom J. Battin

Streams and rivers form conspicuous networks on the Earth and are among natures most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks.


The ISME Journal | 2013

Microbial biodiversity in glacier-fed streams

Linda Wilhelm; Gabriel Singer; Christina Fasching; Tom J. Battin; Katharina Besemer

While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.


Scientific Reports | 2015

Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams

Christina Fasching; Barbara Behounek; Gabriel Singer; Tom J. Battin

Streams receive substantial terrestrial deliveries of dissolved organic matter (DOM). The chromophoric (CDOM) fraction of terrestrial deliveries confers the brown colour to streamwater, often understood as browning, and plays a central role in aquatic photochemistry and is generally considered resistant to microbial metabolism. To assess the relevance of terrigenous DOM for carbon fluxes mediated by stream microorganisms, we determined the bioavailable fraction of DOM and microbial carbon use efficiency (CUE), and related these measures to partial pressure of CO2 in headwater streams spanning across a browning gradient. Fluorescence and absorbance analyses revealed high molecular weight and aromaticity, and elevated contributions from humic-like components to characterize terrestrial CDOM. We found that microorganisms metabolized this material at the cost of low CUE and shifted its composition (from fluorescence and absorbance) towards less aromatic and low-molecular weight compounds. Respiration (from CUE) was related to CO2 supersaturation in streams and this relationship was modulated by DOM composition. Our findings imply that terrigenous DOM is respired by microorganisms rather than incorporated into their biomass, and that this channelizes terrigenous carbon to the pool of CO2 potentially outgassing from streams into the atmosphere. This finding may gain relevance as major terrigenous carbon stores become mobilized and browning progresses.


Ecological Applications | 2007

Anthropogenic subsidies alter stream consumer-resource stoichiometry, biodiversity, and food chains.

Gabriel Singer; Tom J. Battin

Urbanization is dramatically changing nutrient and organic matter regimes in streams, yet the community and ecosystem implications often remain obscure. We assessed the consequences of sewage-derived particulate organic matter (SDPOM) for invertebrate community structure and function in a headwater stream. Using stable isotope analyses, we found assimilation of organic SDPOM to double community secondary production, and stoichiometric analyses revealed SDPOM enriched in phosphorus (P) to foster putatively fast-growing, P-rich consumers in the subsidized reach. This altered consumer-resource stoichiometry impacted both community structure and nutrient fluxes through the invertebrate community. Community structure shifted toward significantly reduced diversity and evenness in the subsidized reach and consequently toward shorter food chains. Our integration of ecological stoichiometry with stable isotope analyses and food web ecology expands the previous focus of traditional ecotoxicology and ecophysiology to an ecosystem-level appreciation of pollutant ecology.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Fluvial network organization imprints on microbial co-occurrence networks

Stefanie Widder; Katharina Besemer; Gabriel Singer; Serena Ceola; Enrico Bertuzzo; Christopher Quince; William T. Sloan; Andrea Rinaldo; Tom J. Battin

Significance Microbial communities orchestrate most biogeochemical processes on Earth. In streams and rivers, surface-attached and matrix-enclosed biofilms dominate microbial life. Despite the relevance of these biofilms for ecosystem processes (e.g., metabolism and nutrient cycling), it remains unclear how features inherent to stream and river networks affect the fundamental organization of biofilm communities in these ecosystems. We combined co-occurrence analyses of biofilms based on next-generation sequencing with a probabilistic hydrological model, and showed how fragementation of microbial co-occurrence networks change across stream networks. Our analyses offer potential insights into the response of microbial community organization and persistence to human pressures that increasingly change the hydrological regime and biodiversity dynamics in fluvial networks. Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity.


Applied and Environmental Microbiology | 2009

Bacterial Community Composition of Stream Biofilms in Spatially Variable-Flow Environments

Katharina Besemer; Gabriel Singer; Iris Hödl; Tom J. Battin

ABSTRACT Streams are highly heterogeneous ecosystems, in terms of both geomorphology and hydrodynamics. While flow is recognized to shape the physical architecture of benthic biofilms, we do not yet understand what drives community assembly and biodiversity of benthic biofilms in the heterogeneous flow landscapes of streams. Within a metacommunity ecology framework, we experimented with streambed landscapes constructed from bedforms in large-scale flumes to illuminate the role of spatial flow heterogeneity in biofilm community composition and biodiversity in streams. Our results show that the spatial variation of hydrodynamics explained a remarkable percentage (up to 47%) of the variation in community composition along bedforms. This suggests species sorting as a model of metacommunity dynamics in stream biofilms, though natural biofilm communities will clearly not conform to a single model offered by metacommunity ecology. The spatial variation induced by the hydrodynamics along the bedforms resulted in a gradient of bacterial beta diversity, measured by a range of diversity and similarity indices, that increased with bedform height and hence with spatial flow heterogeneity at the flume level. Our results underscore the necessity to maintain small-scale physical heterogeneity for community composition and biodiversity of biofilms in stream ecosystems.


PLOS ONE | 2010

Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms.

Gabriel Singer; Katharina Besemer; Philippe Schmitt-Kopplin; Iris Hödl; Tom J. Battin

Background Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity of resource use are poorly understood. Methodology/Principal Findings Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the streambeds with higher flow heterogeneity. Conclusions/Significance Our results suggest biophysical mechanisms, including hydrodynamics and microbial complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity.


Journal of Geophysical Research | 2014

Scales and drivers of temporal pCO2 dynamics in an Alpine stream

Hannes Peter; Gabriel Singer; Christian Preiler; Peter Chifflard; Gertraud Steniczka; Tom J. Battin

The role of inland waters for the global carbon cycle is now recognized and evidence increasingly suggests that stream ecosystems disproportionately contribute to the carbon cycle. Understanding the dynamics and drivers of stream water partial pressure of CO2 (pCO2) and CO2 evasion fluxes from streams to the atmosphere is imperative for assessing the role of climate change on the carbon cycle in stream ecosystems. Monitoring pCO2 over 3 years, we here report on the seasonal, diurnal, and event-driven dynamics of pCO2 in the hyporheic zone and stream water of an Alpine stream and assess possible drivers of these dynamics. Our findings suggest that both catchment-derived CO2 delivered by shallow groundwater into the stream and in-stream respiration continuously build up pCO2 in the hyporheic zone. Depending on stream water temperature and assumedly on primary production (inferred from photosynthetically active radiation), hyporheic CO2 contributes to stream water pCO2 and ultimately to CO2 outgassing to the atmosphere. Diurnal patterns of stream water pCO2 increasingly built up during extended base flow and streambed-scouring storms caused the collapse of these diurnal patterns. Post storm recovery of the diurnal pCO2 patterns was generally rapid. Our findings suggest that decreasing gas exchange velocity related to receding discharge drives recovery dynamics. We found that average CO2 outgassing fluxes during night exceeded those during day by up to 1.8 times. Our study highlights temperature and hydrology—key components of climate change—as major drivers of pCO2 dynamics in Alpine streams. They also underscore the necessity to consider day-night differences in CO2 outgassing fluxes to properly establish carbon budgets and regional estimates of CO2 outgassing to the atmosphere.


PLOS ONE | 2013

Hydrologic Variability Affects Invertebrate Grazing on Phototrophic Biofilms in Stream Microcosms

Serena Ceola; Iris Hödl; Martina Adlboller; Gabriel Singer; Enrico Bertuzzo; Lorenzo Mari; Gianluca Botter; Johann Waringer; Tom J. Battin; Andrea Rinaldo

The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structure and function is far from complete. Here, by experimenting with two contrasting flow regimes in stream microcosms, we provide a novel mechanistic explanation for how fluctuating flow regimes may affect grazing of phototrophic biofilms (i.e., periphyton) by an invertebrate species (Ecdyonurus sp.). In both flow regimes light availability was manipulated as a control on autotroph biofilm productivity and grazer activity, thereby allowing the test of flow regime effects across various ratios of biofilm biomass to grazing activity. Average grazing rates were significantly enhanced under variable flow conditions and this effect was highest at intermediate light availability. Our results suggest that stochastic flow regimes, characterised by suitable fluctuations and temporal persistence, may offer increased windows of opportunity for grazing under favourable shear stress conditions. This bears important implications for the development of comprehensive schemes for water resources management and for the understanding of trophic carbon transfer in stream food webs.

Collaboration


Dive into the Gabriel Singer's collaboration.

Top Co-Authors

Avatar

Tom J. Battin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber J. Ulseth

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Enrico Bertuzzo

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge