Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriela Concha is active.

Publication


Featured researches published by Gabriela Concha.


Pharmacology & Toxicology | 2001

Role of metabolism in arsenic toxicity.

Marie Vahter; Gabriela Concha

In humans, as in most mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by alternating reduction of pentavalent arsenic to trivalent and addition of a methyl group from S-adenosylmethionine. The methylation of inorganic arsenic may be considered a detoxification mechanism, as the end metabolites, MMA and DMA, are less reactive with tissue constituents, less toxic, and more readily excreted in the urine than is inorganic arsenic, especially the trivalent form (AsIII, arsenite). The latter is highly reactive with tissue components, due to its strong affinity for sulfhydryl groups. Thus, following exposure to AsV the first step in the biotransformation, i.e. the reduction to AsIII, may be considered a bioactivation. Also, reactive intermediate metabolites of high toxicity, mainly MMAIII, may be formed and distributed to tissues. Low levels of MMAIII and DMAIII have been detected in urine of individuals chronically exposed to inorganic arsenic via drinking water. However, the contribution of MMAIIIand DMAIII to the toxicity observed after intake of inorganic arsenic by humans remains to be elucidated. The major route of excretion of arsenic is via the kidneys. Evaluation of the methylation of arsenic is mainly based on the relative amounts of the different metabolites in urine. On average human urine contains 10-30% inorganic arsenic, 10-20% MMA and 60-80% DMA.


European Journal of Pharmacology: Environmental Toxicology and Pharmacology | 1995

A unique metabolism of inorganic arsenic in native Andean women

Marie Vahter; Gabriela Concha; Barbro Nermell; Robert Nilsson; F.N. Dulout; A.T. Natarajan

The metabolism of inorganic arsenic (As) in native women in four Andean villages in north-western Argentina with elevated levels of As in the drinking water (2.5, 14, 31, and 200 micrograms/1, respectively) has been investigated. Collected foods contained 9-427 micrograms As/kg wet weight, with the highest concentrations in soup. Total As concentrations in blood were markedly elevated (median 7.6 micrograms/1) only in the village with the highest concentration in the drinking water. Group median concentrations of metabolites of inorganic As (inorganic As, methylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in the urine varied between 14 and 256 micrograms/1. Urinary concentrations of total As were only slightly higher (18-258 micrograms/1), indicating that inorganic As was the main form of As ingested. In contrast to all other populations studied so far, arsenic was excreted in the urine mainly as inorganic As and DMA. There was very little MMA in the urine (overall median 2.2%, range 0.0-11%), which should be compared to 10-20% of the urinary arsenic in all other populations studied. This may indicate the existence of genetic polymorphism in the control of the methyltransferase activity involved in the methylation of As. Furthermore, the percentage of DMA in the urine was significantly higher in the village with 200 micrograms As/1 in the water, indicating an induction of the formation of DMA. Such an effect has not been observed in other studies on human subjects with elevated exposure to arsenic.


Environmental Health Perspectives | 2007

Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina.

Karin Engström; Karin Broberg; Gabriela Concha; Barbro Nermell; Margareta Warholm; Marie Vahter

The susceptibility to arsenic-induced diseases differs greatly between individuals, possibly due to interindividual variations in As metabolism that affect retention and distribution of toxic metabolites. To elucidate the role of genetic factors in As metabolism, we studied how polymorphisms in six genes affected the urinary metabolite pattern in a group of indigenous women (n = 147) in northern Argentina who were exposed to approximately 200 μg/L As in drinking water. These women had low urinary percentages of monomethylated As (MMA) and high percentages of dimethylated As (DMA). MMA has been associated with adverse health effects, and DMA has the lowest body retention of the metabolites. The genes studied were arsenic(+III)methyltransferase (AS3MT), glutathione S-transferase omega 1 (GSTO1), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), methylenetetrahydrofolate reductase (MTHFR), and glutathione S-transferases mu 1 (GSTM1) and theta 1 (GSTT1). We found three intronic polymorphisms in AS3MT (G12390C, C14215T, and G35991A) associated with a lower percentage of MMA (%MMA) and a higher percentage of DMA (%DMA) in urine. The variant homozygotes showed approximately half the %MMA compared with wild-type homozygotes. These polymorphisms were in strong linkage, with high allelic frequencies (72–76%) compared with other populations. We also saw minor effects of other polymorphisms in the multivariate regression analysis with effect modification for the deletion genotypes for GSTM1 (affecting %MMA) and GSTT1 (affecting %MMA and %DMA). For pregnant women, effect modification was seen for the folate-metabolizing genes MTR and MTHFR. In conclusion, these findings indicate that polymorphisms in AS3MT—and possibly GSTM1, GSTT1, MTR, and MTHFR—are responsible for a large part of the interindividual variation in As metabolism and susceptibility.


Environmental Health Perspectives | 2010

Polymorphisms in Arsenic(+III Oxidation State) Methyltransferase (AS3MT) Predict Gene Expression of AS3MT as Well as Arsenic Metabolism

Karin Engström; Marie Vahter; Simona Jurkovic Mlakar; Gabriela Concha; Barbro Nermell; Rubhana Raqib; Alejandro Cardozo; Karin Broberg

Background Arsenic (As) occurs as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in humans, and the methylation pattern demonstrates large interindividual differences. The fraction of urinary MMA is a marker for susceptibility to As-related diseases. Objectives We evaluated the impact of polymorphisms in five methyltransferase genes on As metabolism in two populations, one in South America and one in Southeast Asia. The methyltransferase genes were arsenic(+III oxidation state) methyltransferase (AS3MT), DNA-methyltransferase 1a and 3b (DNMT1a and DNMT3b, respectively), phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine methyltransferase (BHMT). AS3MT expression was analyzed in peripheral blood. Methods Subjects were women exposed to As in drinking water in the Argentinean Andes [n = 172; median total urinary As (U-As), 200 μg/L] and in rural Bangladesh (n = 361; U-As, 100 μg/L; all in early pregnancy). Urinary As metabolites were measured by high-pressure liquid chromatography/inductively coupled plasma mass spectrometry. Polymorphisms (n = 22) were genotyped with Sequenom, and AS3MT expression was measured by quantitative real-time polymerase chain reaction using TaqMan expression assays. Results Six AS3MT polymorphisms were significantly associated with As metabolite patterns in both populations (p ≤ 0.01). The most frequent AS3MT haplotype in Bangladesh was associated with a higher percentage of MMA (%MMA), and the most frequent haplotype in Argentina was associated with a lower %MMA and a higher percentage of DMA. Four polymorphisms in the DNMT genes were associated with metabolite patterns in Bangladesh. Noncoding AS3MT polymorphisms affected gene expression of AS3MT in peripheral blood, demonstrating that one functional impact of AS3MT polymorphisms may be altered levels of gene expression. Conclusions Polymorphisms in AS3MT significantly predicted As metabolism across these two very different populations, suggesting that AS3MT may have an impact on As metabolite patterns in populations worldwide.


Environmental Health Perspectives | 2012

Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women.

Mohammad Bakhtiar Hossain; Marie Vahter; Gabriela Concha; Karin Broberg

Background: Cadmium, a common food pollutant, alters DNA methylation in vitro. Epigenetic effects might therefore partly explain cadmium’s toxicity, including its carcinogenicity; however, human data on epigenetic effects are lacking. Objective: We evaluated the effects of dietary cadmium exposure on DNA methylation, considering other environmental exposures, genetic predisposition, and gene expression. Methods: Concentrations of cadmium, arsenic, selenium, and zinc in blood and urine of nonsmoking women (n = 202) from the northern Argentinean Andes were measured by inductively coupled mass spectrometry. Methylation in CpG islands of LINE-1 (long interspersed nuclear element-1; a proxy for global DNA methylation) and promoter regions of p16 [cyclin-dependent kinase inhibitor 2A (CDKN2A)] and MLH1 (mutL homolog 1) in peripheral blood were measured by bisulfite polymerase chain reaction pyrosequencing. Genotyping (n = 172) for the DNA (cytosine-5-)-methyltransferase 1 gene (DNMT1 rs10854076 and rs2228611) and DNA (cytosine-5-)-methyltransferase 3 beta gene (DNMT3B rs2424913 and rs2424932) was performed with Sequenom iPLEX GOLD SNP genotyping; and gene expression (n = 90), with DirectHyb HumanHT-12 (version 3.0). Results: Cadmium exposure was low: median concentrations in blood and urine were 0.36 and 0.23 µg/L, respectively. Urinary cadmium (natural log transformed) was inversely associated with LINE-1 methylation (β = –0.50, p = 0.0070; β = –0.44, p = 0.026, adjusted for age and coca chewing) but not with p16 or MLH1 methylation. Both DNMT1 rs10854076 and DNMT1 rs2228611 polymorphisms modified associations between urinary cadmium and LINE-1 (p-values for interaction in adjusted models were 0.045 and 0.064, respectively). The rare genotypes demonstrated stronger hypomethylation with increasing urinary cadmium concentrations. Cadmium was inversely associated with DNMT3B (rS = –0.28, p = 0.0086) but not with DNMT1 expression (rS = –0.075, p = 0.48). Conclusion: Environmental cadmium exposure was associated with DNA hypomethylation in peripheral blood, and DNMT1 genotypes modified this association. The role of epigenetic modifications in cadmium-associated diseases needs clarification.


Environmental Science & Technology | 2010

High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina.

Gabriela Concha; Karin Broberg; Margaretha Grandér; Alejandro Cardozo; Brita Palm; Marie Vahter

Elevated concentrations of arsenic in drinking water are common worldwide, however, little is known about the presence of other potentially toxic elements. We analyzed 31 different elements in drinking water collected in San Antonio de los Cobres and five surrounding Andean villages in Argentina, and in urine of the inhabitants, using ICP-MS. Besides confirmation of elevated arsenic concentrations in the drinking water (up to 210 microg/L), we found remarkably high concentrations of lithium (highest 1000 microg/L), cesium (320 microg/L), rubidium (47 microg/L), and boron (5950 microg/L). Similarly elevated concentrations of arsenic, lithium, cesium, and boron were found in urine of the studied women (N=198): village median values ranged from 26 to 266 microg/L of arsenic, 340 to 4550 microg/L of lithium, 34 to 531 microg/L of cesium, and 2980 to 16,560 microg/L of boron. There is an apparent risk of toxic effects of long-term exposure to several of the elements, and studies on associations with adverse human health effects are warranted, particularly considering the combined, life-long exposure. Because of the observed wide range of concentrations, all water sources used for drinking water should be screened for a large number of elements; obviously, this applies to all drinking water sources globally.


Metallomics | 2012

Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype

Mohammad Bakhtiar Hossain; Marie Vahter; Gabriela Concha; Karin Broberg

Arsenic is carcinogenic, possibly partly through epigenetic mechanisms. We evaluated the effects of arsenic exposure and metabolism on DNA methylation. Arsenic exposure and methylation efficiency in 202 women in the Argentinean Andes were assessed from concentrations of arsenic metabolites in urine (inorganic arsenic, methylarsonic acid [MMA], and dimethylarsinic acid [DMA]), measured by HPLC-ICPMS. Methylation of CpGs of the tumor suppressor gene p16, the DNA repair gene MLH1, and the repetitive elements LINE1 was measured by PCR pyrosequencing of blood DNA. Genotyping (N = 172) for AS3MT was performed using Sequenom™, and gene expression (N = 90) using Illumina DirectHyb HumanHT-12 v3.0. Median arsenic concentration in urine was 230 μg L(-1) (range 10.1-1251). In linear regression analysis, log(2)-transformed urinary arsenic concentrations were positively associated with methylation of p16 (β = 0.14, P = 0.0028) and MLH1 (β = 0.28, P = 0.0011), but not with LINE1. Arsenic concentrations were of borderline significance negatively correlated with expression of p16 (r(s) = -0.20; P = 0.066)), but not with MLH1. The fraction of inorganic arsenic was positively (β = 0.026; P = 0.010) and DMA was negatively (β = -0.017, P = 0.043) associated with p16 methylation with no effect of MMA. Carriers of the slow-metabolizing AS3MT haplotype were associated with more p16 methylation (P = 0.022). Arsenic exposure was correlated with increased methylation, in blood, of genes encoding enzymes that suppress carcinogenesis, and the arsenic metabolism efficiency modified the degree of epigenetic alterations.


Environmental Health Perspectives | 2011

Lithium in Drinking Water and Thyroid Function

Karin Broberg; Gabriela Concha; Karin Engström; Magnus Lindvall; Margareta Grandér; Marie Vahter

Background High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function. Objectives We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function. Methods Women (n = 202) were recruited in four Andean villages in northern Argentina. Lithium exposure was assessed based on concentrations in spot urine samples, measured by inductively coupled plasma mass spectrometry. Thyroid function was evaluated by plasma free thyroxine (T4) and pituitary gland thyroid-stimulating hormone (TSH), analyzed by routine immunometric methods. Results The median urinary lithium concentration was 3,910 μg/L (5th, 95th percentiles, 270 μg/L, 10,400 μg/L). Median plasma concentrations (5th, 95th percentiles) of T4 and TSH were 17 pmol/L (13 pmol/L, 21 pmol/L) and 1.9 mIU/L, (0.68 mIU/L, 4.9 mIU/L), respectively. Urine lithium was inversely associated with T4 [β for a 1,000-μg/L increase = −0.19; 95% confidence interval (CI), −0.31 to −0.068; p = 0.002] and positively associated with TSH (β = 0.096; 95% CI, 0.033 to 0.16; p = 0.003). Both associations persisted after adjustment (for T4, β = −0.17; 95% CI, −0.32 to −0.015; p = 0.032; for TSH: β = 0.089; 95% CI, 0.024 to 0.15; p = 0.007). Urine selenium was positively associated with T4 (adjusted T4 for a 1 μg/L increase: β = 0.041; 95% CI, 0.012 to 0.071; p = 0.006). Conclusions Exposure to lithium via drinking water and other environmental sources may affect thyroid function, consistent with known side effects of medical treatment with lithium. This stresses the need to screen for lithium in all drinking water sources.


Environmental Health Perspectives | 2013

N-6-Adenine-Specific DNA Methyltransferase 1 (N6AMT1) Polymorphisms and Arsenic Methylation in Andean Women

Florencia Harari; Karin Engström; Gabriela Concha; Graciela Colque; Marie Vahter; Karin Broberg

Background: In humans, inorganic arsenic is metabolized to methylated metabolites mainly by arsenic (+3 oxidation state) methyltransferase (AS3MT). AS3MT polymorphisms are associated with arsenic metabolism efficiency. Recently, a putative N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) was found to methylate arsenic in vitro. Objective: We evaluated the role of N6AMT1 polymorphisms in arsenic methylation efficiency in humans. Methods: We assessed arsenic methylation efficiency in 188 women exposed to arsenic via drinking water (~ 200 µg/L) in the Argentinean Andes by measuring the relative concentrations of arsenic metabolites in urine [inorganic arsenic, methylarsonic acid (MMA), and dimethylarsinic acid] by high-performance liquid chromatography coupled with hydride generation and inductively coupled plasma mass spectrometry. We performed genotyping for N6AMT1 and AS3MT polymorphisms by Taqman assays, and gene expression (in blood; n = 63) with Illumina HumanHT-12 v4.0. Results: Five N6AMT1 single nucleotide polymorphisms (SNPs; rs1997605, rs2205449, rs2705671, rs16983411, and rs1048546) and two N6AMT1 haplotypes were significantly associated with the percentage of MMA (%MMA) in urine, even after adjusting for AS3MT haplotype. %MMA increased monotonically according to the number of alleles for each SNP (e.g., for rs1048546, mean %MMA was 7.5% for GG, 8.8% for GT, and 9.7% for TT carriers). Three SNPs were in linkage disequilibrium (R2 > 0.8). Estimated associations for joint effects of N6AMT1 (haplotype 1) and AS3MT (haplotype 2) were generally consistent with expectations for additive effects of each haplotype on %MMA. Carriers of N6AMT1 genotypes associated with lower %MMA showed the lowest N6AMT1 expression, but associations were monotonic according to copy number for only one genotype and one haplotype. Conclusions: N6AMT1 polymorphisms were associated with arsenic methylation in Andean women, independent of AS3MT. N6AMT1 polymorphisms may be susceptibility markers for arsenic-related toxic effects.


Environmental Health Perspectives | 2013

Possible positive selection for an arsenic-protective haplotype in humans

Carina M. Schlebusch; Cecil M. Lewis; Marie Vahter; Karin Engström; Raul Y. Tito; Alexandra J. Obregon-Tito; Doris Huerta; Susan I. Polo; Ángel Medina; Tom D. Brutsaert; Gabriela Concha; Mattias Jakobsson; Karin Broberg

Background: Arsenic in drinking water causes severe health effects. Indigenous people in the South American Andes have likely lived with arsenic-contaminated drinking water for thousands of years. Inhabitants of San Antonio de los Cobres (SAC) in the Argentinean highlands generally carry an AS3MT (the major arsenic-metabolizing gene) haplotype associated with reduced health risks due to rapid arsenic excretion and lower urinary fraction of the monomethylated metabolite. Objectives: We hypothesized an adaptation to high-arsenic living conditions via a possible positive selection for protective AS3MT variants and compared AS3MT haplotype frequencies among different indigenous groups. Methods: Indigenous groups we evaluated were a) inhabitants of SAC and villages near Salta in northern Argentina (n = 346), b) three Native American populations from the Human Genome Diversity Project (HGDP; n = 25), and c) five Peruvian populations (n = 97). The last two groups have presumably lower historical exposure to arsenic. Results: We found a significantly higher frequency of the protective AS3MT haplotype in the SAC population (68.7%) compared with the HGDP (14.3%, p < 0.001, Fisher exact test) and Peruvian (50.5%, p < 0.001) populations. Genome-wide microsatellite (n = 671) analysis showed no detectable level of population structure between SAC and Peruvian populations (measure of population differentiation FST = 0.006) and low levels of structure between SAC and HGDP populations (FST < 0.055 for all pairs of populations compared). Conclusions: Because population stratification seems unlikely to explain the differences in AS3MT haplotype frequencies, our data raise the possibility that, during a few thousand years, natural selection for tolerance to the environmental stressor arsenic may have increased the frequency of protective variants of AS3MT. Further studies are needed to investigate this hypothesis.

Collaboration


Dive into the Gabriela Concha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge