Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriela K. Fragiadakis is active.

Publication


Featured researches published by Gabriela K. Fragiadakis.


Science Translational Medicine | 2014

Clinical recovery from surgery correlates with single-cell immune signatures

Brice Gaudilliere; Gabriela K. Fragiadakis; Robert V. Bruggner; Monica Nicolau; Rachel Finck; Martha Tingle; Julian Silva; Edward A. Ganio; Christine G. Yeh; William J. Maloney; James I. Huddleston; Stuart B. Goodman; Mark M. Davis; Sean C. Bendall; Wendy J. Fantl; Martin S. Angst; Garry P. Nolan

Single-cell mass cytometry revealed immune correlates of patient-associated variability in surgical recovery. Signaling Surgical Recovery The speed and ease of recovery after surgery differ for every patient, and determining the mechanisms that drive recovery could lead to patient-specific recovery protocols. Gaudilliere et al. used mass cytometry to characterize postsurgical immunological insult at a single-cell level and found a surgical immune signature that correlated with clinical recovery across patients. Specifically, cell signaling responses, but not cell frequency, were linked to recovery. Moreover, the correlated signaling responses occurred most notably in CD14+ monocytes, suggesting that these cells may play a predominant role in surgical recovery. The consistency of this signature across patients suggests a tightly regulated immune response to surgical trauma, which, if validated, may form the basis of a diagnostic guideline for personalized postsurgical care. Delayed recovery from surgery causes personal suffering and substantial societal and economic costs. Whether immune mechanisms determine recovery after surgical trauma remains ill-defined. Single-cell mass cytometry was applied to serial whole-blood samples from 32 patients undergoing hip replacement to comprehensively characterize the phenotypic and functional immune response to surgical trauma. The simultaneous analysis of 14,000 phosphorylation events in precisely phenotyped immune cell subsets revealed uniform signaling responses among patients, demarcating a surgical immune signature. When regressed against clinical parameters of surgical recovery, including functional impairment and pain, strong correlations were found with STAT3 (signal transducer and activator of transcription), CREB (adenosine 3′,5′-monophosphate response element–binding protein), and NF-κB (nuclear factor κB) signaling responses in subsets of CD14+ monocytes (R = 0.7 to 0.8, false discovery rate <0.01). These sentinel results demonstrate the capacity of mass cytometry to survey the human immune system in a relevant clinical context. The mechanistically derived immune correlates point to diagnostic signatures, and potential therapeutic targets, that could postoperatively improve patient recovery.


Science | 2015

An interactive reference framework for modeling a dynamic immune system

Matthew H. Spitzer; Pier Federico Gherardini; Gabriela K. Fragiadakis; Nupur Bhattacharya; Robert Yuan; Andrew Hotson; Rachel Finck; Yaron Carmi; Eli R. Zunder; Wendy J. Fantl; Sean C. Bendall; Edgar G. Engleman; Garry P. Nolan

Single-cell measurements map immunity Multiple characteristics of individual cells define cell types and their physiological states. Spitzer et al. quantitated the abundance of 39 different cell surface proteins or transcription factors on individual cells of the mouse immune system. They used these measurements to create a map that clustered similar individual cells into groups corresponding to cell type and function. Their extensible experimental platform will allow the inclusion of other data types and data from independent laboratories. Science, this issue 10.1126/science.1259425 Cytometry meets mass spectrometry to create a functional map of the immune system. INTRODUCTION Immune cells constitute an interacting hierarchy that coordinates its activities according to genetic and environmental contexts. This systemically mobile network of cells results in emergent properties that are derived from dynamic cellular interactions. Unlike many solid tissues, where cells of given functions are localized into substructures that can be readily defined, the distribution of phenotypically similar immune cells into various organs complicates discerning any modest differences between them. Over decades of investigation into immune functions during health and disease, research has necessarily focused on understanding the individual cell types within the immune system, and, more recently, toward identifying interacting cells and the messengers they use to communicate. RATIONALE Methods of single-cell analysis, such as flow cytometry, have led the effort to enumerate and quantitatively characterize immune cell populations. As research has accelerated, our understanding of immune organization has surpassed the technical limitations of fluorescence-based flow cytometry. With the advent of mass cytometry, which enables measuring significantly more features of individual cells, most known immune cell types can now be identified from within a single experiment. Leveraging this capability, we set out to initiate an immune system reference framework to provide a working definition of immune organization and enable the integration of new data sets. RESULTS To build a reference framework from mass cytometry data, we developed a novel algorithm to transform the single-cell data into intuitive maps. These Scaffold maps provide a data-driven interpretation of immune organization while also integrating conventional immune cell populations as landmarks to orient the user. By applying Scaffold maps to data from the bone marrow of wild-type C57BL/6 mice, the method reconstructed the organization within this complex developmental organ. Using this sample as a reference point, the unique organization of immune cells within various organs across the body was revealed. The maps recapitulated canonical cellular phenotypes while revealing reproducible, tissue-specific deviations. The approach revealed influences of genetic variation and circadian rhythms on immune structure, permitted direct comparisons of murine and human blood cell phenotypes, and even enabled archival fluorescence-based flow cytometry data to be mapped onto the reference framework. CONCLUSION This foundational reference map provides a working definition of systemic immune organization to which new data can be integrated to reveal deviations driven by genetics, environment, or pathology. Beyond providing an analytical framework to understand immune organization from the unified data set generated here, the approaches we describe can serve as a data repository for collating experimental data from the research community, including gene expression and mutational analysis. Efforts that characterize cellular behavior in this open-source approach will continue to improve upon the initiating reference presented here to reveal the inherent structure in biological networks of immunity for clinical benefit. Building a dynamic immune system reference framework. By combining mass cytometry with the Scaffold maps algorithm, the cellular organization of any complex sample can be transformed into an intuitive and interactive map for further analysis. By first choosing one foundational sample as a reference (i.e., the bone marrow of wild-type mice), the effects of any perturbation can be readily identified in this framework. Immune cells function in an interacting hierarchy that coordinates the activities of various cell types according to genetic and environmental contexts. We developed graphical approaches to construct an extensible immune reference map from mass cytometry data of cells from different organs, incorporating landmark cell populations as flags on the map to compare cells from distinct samples. The maps recapitulated canonical cellular phenotypes and revealed reproducible, tissue-specific deviations. The approach revealed influences of genetic variation and circadian rhythms on immune system structure, enabled direct comparisons of murine and human blood cell phenotypes, and even enabled archival fluorescence-based flow cytometry data to be mapped onto the reference framework. This foundational reference map provides a working definition of systemic immune organization to which new data can be integrated to reveal deviations driven by genetics, environment, or pathology.


Nature Medicine | 2017

Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states

David Furman; Junlei Chang; Lydia Lartigue; Christopher R. Bolen; Francois Haddad; Brice Gaudilliere; Edward A. Ganio; Gabriela K. Fragiadakis; Matthew H. Spitzer; Isabelle Douchet; Sophie Daburon; Jean-François Moreau; Garry P. Nolan; Patrick Blanco; Julie Déchanet-Merville; Cornelia L. Dekker; Vladimir Jojic; Calvin J. Kuo; Mark M. Davis; Benjamin Faustin

Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N4-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions.


Cytometry Part A | 2014

Transient Partial Permeabilization with Saponin Enables Cellular Barcoding Prior to Surface Marker Staining

Gregory K. Behbehani; Colin Thom; Eli R. Zunder; Rachel Finck; Brice Gaudilliere; Gabriela K. Fragiadakis; Wendy J. Fantl; Garry P. Nolan

Fluorescent cellular barcoding and mass‐tag cellular barcoding are cytometric methods that enable high sample throughput, minimize inter‐sample variation, and reduce reagent consumption. Previously employed barcoding protocols require that barcoding be performed after surface marker staining, complicating combining the technique with measurement of alcohol‐sensitive surface epitopes. This report describes a method of barcoding fixed cells after a transient partial permeabilization with 0.02% saponin that results in efficient and consistent barcode staining with fluorescent or mass‐tagged reagents while preserving surface marker staining. This approach simplifies barcoding protocols and allows direct comparison of surface marker staining of multiple samples without concern for variations in the antibody cocktail volume, antigen‐antibody ratio, or machine sensitivity. Using this protocol, cellular barcoding can be used to reliably detect subtle differences in surface marker expression.


Anesthesiology | 2015

Patient-specific Immune States before Surgery Are Strong Correlates of Surgical Recovery.

Gabriela K. Fragiadakis; Brice Gaudilliere; Edward A. Ganio; Nima Aghaeepour; Martha Tingle; Garry P. Nolan; Martin S. Angst

Background:Recovery after surgery is highly variable. Risk-stratifying patients based on their predicted recovery profile will afford individualized perioperative management strategies. Recently, application of mass cytometry in patients undergoing hip arthroplasty revealed strong immune correlates of surgical recovery in blood samples collected shortly after surgery. However, the ability to interrogate a patient’s immune state before surgery and predict recovery is highly desirable in perioperative medicine. Methods:To evaluate a patient’s presurgical immune state, cell-type–specific intracellular signaling responses to ex vivo ligands (lipopolysaccharide, interleukin [IL]-6, IL-10, and IL-2/granulocyte macrophage colony-stimulating factor) were quantified by mass cytometry in presurgical blood samples. Selected ligands modulate signaling processes perturbed by surgery. Twenty-three cell surface and 11 intracellular markers were used for the phenotypic and functional characterization of major immune cell subsets. Evoked immune responses were regressed against patient-centered outcomes, contributing to protracted recovery including functional impairment, postoperative pain, and fatigue. Results:Evoked signaling responses varied significantly and defined patient-specific presurgical immune states. Eighteen signaling responses correlated significantly with surgical recovery parameters (|R| = 0.37 to 0.70; false discovery rate < 0.01). Signaling responses downstream of the toll-like receptor 4 in cluster of differentiation (CD) 14+ monocytes were particularly strong correlates, accounting for 50% of observed variance. Immune correlates identified in presurgical blood samples mirrored correlates identified in postsurgical blood samples. Conclusions:Convergent findings in pre- and postsurgical analyses provide validation of reported immune correlates and suggest a critical role of the toll-like receptor 4 signaling pathway in monocytes for the clinical recovery process. The comprehensive assessment of patients’ preoperative immune state is promising for predicting important recovery parameters and may lead to clinical tests using standard flow cytometry.


Cytometry Part A | 2015

Implementing Mass Cytometry at the Bedside to Study the Immunological Basis of Human Diseases: Distinctive Immune Features in Patients with a History of Term or Preterm Birth

Brice Gaudilliere; Edward A. Ganio; Martha Tingle; Hope Lancero; Gabriela K. Fragiadakis; Quentin Baca; Nima Aghaeepour; Ronald J. Wong; Cele Quaintance; Yasser Y. El-Sayed; Gary M. Shaw; David B. Lewis; David K. Stevenson; Garry P. Nolan; Martin S. Angst

Single‐cell technologies have immense potential to shed light on molecular and biological processes that drive human diseases. Mass cytometry (or Cytometry by Time Of Flight mass spectrometry, CyTOF) has already been employed in clinical studies to comprehensively survey patients’ circulating immune system. As interest in the “bedside” application of mass cytometry is growing, the delineation of relevant methodological issues is called for. This report uses a newly generated dataset to discuss important methodological considerations when mass cytometry is implemented in a clinical study. Specifically, the use of whole blood samples versus peripheral blood mononuclear cells (PBMCs), design of mass‐tagged antibody panels, technical and analytical implications of sample barcoding, and application of traditional and unsupervised approaches to analyze high‐dimensional mass cytometry datasets are discussed. A mass cytometry assay was implemented in a cross‐sectional study of 19 women with a history of term or preterm birth to determine whether immune traits in peripheral blood differentiate the two groups in the absence of pregnancy. Twenty‐seven phenotypic and 11 intracellular markers were simultaneously analyzed in whole blood samples stimulated with lipopolysaccharide (LPS at 0, 0.1, 1, 10, and 100 ng mL−1) to examine dose‐dependent signaling responses within the toll‐like receptor 4 (TLR4) pathway. Complementary analyses, grounded in traditional or unsupervised gating strategies of immune cell subsets, indicated that the prpS6 and pMAPKAPK2 responses in classical monocytes are accentuated in women with a history of preterm birth (FDR<1%). The results suggest that women predisposed to preterm birth may be prone to mount an exacerbated TLR4 response during the course of pregnancy. This important hypothesis‐generating finding points to the power of single‐cell mass cytometry to detect biologically important differences in a relatively small patient cohort.


The ISME Journal | 2016

The effect of microbial colonization on the host proteome varies by gastrointestinal location

Joshua S. Lichtman; Emily Alsentzer; Mia Jaffe; Daniel Sprockett; Evan Masutani; Elvis Ikwa; Gabriela K. Fragiadakis; David Clifford; Bevan Emma Huang; Justin L. Sonnenburg; Kerwyn Casey Huang; Joshua E. Elias

Endogenous intestinal microbiota have wide-ranging and largely uncharacterized effects on host physiology. Here, we used reverse-phase liquid chromatography-coupled tandem mass spectrometry to define the mouse intestinal proteome in the stomach, jejunum, ileum, cecum and proximal colon under three colonization states: germ-free (GF), monocolonized with Bacteroides thetaiotaomicron and conventionally raised (CR). Our analysis revealed distinct proteomic abundance profiles along the gastrointestinal (GI) tract. Unsupervised clustering showed that host protein abundance primarily depended on GI location rather than colonization state and specific proteins and functions that defined these locations were identified by random forest classifications. K-means clustering of protein abundance across locations revealed substantial differences in host protein production between CR mice relative to GF and monocolonized mice. Finally, comparison with fecal proteomic data sets suggested that the identities of stool proteins are not biased to any region of the GI tract, but are substantially impacted by the microbiota in the distal colon.


Journal of Immunology | 2016

Mapping the Fetomaternal Peripheral Immune System at Term Pregnancy.

Gabriela K. Fragiadakis; Quentin Baca; Pier Federico Gherardini; Edward A. Ganio; Dyani Gaudilliere; Martha Tingle; Hope Lancero; Leslie S. McNeil; Matthew H. Spitzer; Ronald J. Wong; Gary M. Shaw; Gary L. Darmstadt; Karl G. Sylvester; Virginia D. Winn; Brendan Carvalho; David B. Lewis; David K. Stevenson; Garry P. Nolan; Nima Aghaeepour; Martin S. Angst; Brice Gaudilliere

Preterm labor and infections are the leading causes of neonatal deaths worldwide. During pregnancy, immunological cross talk between the mother and her fetus is critical for the maintenance of pregnancy and the delivery of an immunocompetent neonate. A precise understanding of healthy fetomaternal immunity is the important first step to identifying dysregulated immune mechanisms driving adverse maternal or neonatal outcomes. This study combined single-cell mass cytometry of paired peripheral and umbilical cord blood samples from mothers and their neonates with a graphical approach developed for the visualization of high-dimensional data to provide a high-resolution reference map of the cellular composition and functional organization of the healthy fetal and maternal immune systems at birth. The approach enabled mapping of known phenotypical and functional characteristics of fetal immunity (including the functional hyperresponsiveness of CD4+ and CD8+ T cells and the global blunting of innate immune responses). It also allowed discovery of new properties that distinguish the fetal and maternal immune systems. For example, examination of paired samples revealed differences in endogenous signaling tone that are unique to a mother and her offspring, including increased ERK1/2, MAPK-activated protein kinase 2, rpS6, and CREB phosphorylation in fetal Tbet+CD4+ T cells, CD8+ T cells, B cells, and CD56loCD16+ NK cells and decreased ERK1/2, MAPK-activated protein kinase 2, and STAT1 phosphorylation in fetal intermediate and nonclassical monocytes. This highly interactive functional map of healthy fetomaternal immunity builds the core reference for a growing data repository that will allow inferring deviations from normal associated with adverse maternal and neonatal outcomes.


Journal of Immunology | 2017

Multicenter Systems Analysis of Human Blood Reveals Immature Neutrophils in Males and During Pregnancy.

Jana Blazkova; Sarthak Gupta; Yudong Liu; Brice Gaudilliere; Edward A. Ganio; Christopher R. Bolen; Ron Saar-Dover; Gabriela K. Fragiadakis; Martin S. Angst; Sarfaraz Hasni; Nima Aghaeepour; David K. Stevenson; Nicole Baldwin; Esperanza Anguiano; Damien Chaussabel; Matthew C. Altman; Mariana J. Kaplan; Mark M. Davis; David Furman

Despite clear differences in immune system responses and in the prevalence of autoimmune diseases between males and females, there is little understanding of the processes involved. In this study, we identified a gene signature of immature-like neutrophils, characterized by the overexpression of genes encoding for several granule-containing proteins, which was found at higher levels (up to 3-fold) in young (20–30 y old) but not older (60 to >89 y old) males compared with females. Functional and phenotypic characterization of peripheral blood neutrophils revealed more mature and responsive neutrophils in young females, which also exhibited an elevated capacity in neutrophil extracellular trap formation at baseline and upon microbial or sterile autoimmune stimuli. The expression levels of the immature-like neutrophil signature increased linearly with pregnancy, an immune state of increased susceptibility to certain infections. Using mass cytometry, we also find increased frequencies of immature forms of neutrophils in the blood of women during late pregnancy. Thus, our findings show novel sex differences in innate immunity and identify a common neutrophil signature in males and in pregnant women.


bioRxiv | 2016

Cytokine and Leukocyte Profiling Reveal Pro-Inflammatory and Autoimmune Features in Frontotemporal Dementia Patients

Philipp A. Jaeger; Trisha Stan; Eva Czirr; Markus Britschgi; Daniela Berdnik; Ruo-Pan Huang; Bradley F. Boeve; Adam L. Boxer; NiCole Finch; Gabriela K. Fragiadakis; Neill R. Graff-Radford; Ruochun Huang; Hudson Johns; Anna Karydas; David S. Knopman; Michael D. Leipold; Holden T. Maecker; Zachary A. Miller; Ronald C. Petersen; Rosa Rademakers; Chung-Huan Sun; Steve Younkin; Bruce L. Miller; Tony Wyss-Coray

The growing link between systemic environment and brain function opens the possibility that cellular communication and composition in blood are correlated with brain health. We tested this concept in frontotemporal dementia with novel, unbiased tools that measure hundreds of soluble signaling proteins or characterize the vast immune cell repertoire in blood. With these tools we discovered complementary abnormalities indicative of abnormal T cell populations and autoimmunity in frontotemporal dementia.

Collaboration


Dive into the Gabriela K. Fragiadakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge