Gabriela Kramer-Marek
Institute of Cancer Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriela Kramer-Marek.
Clinical Cancer Research | 2008
Sang Bong Lee; Moinuddin Hassan; Robert J. Fisher; Oleg Chertov; Victor Chernomordik; Gabriela Kramer-Marek; Amir H. Gandjbakhche; Jacek Capala
Purpose: HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared (NIR) optical imaging. The goal is to provide probes that will minimally interfere with the studied system, that is, whose binding does not interfere with the binding of the therapeutic agents and whose effect on the target cells is minimal. Experimental Design: We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semiquantitative in vivo NIR optical imaging studies were carried out using mice with s.c. xenografts of HER2-positive tumors. Results: The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. Conclusion: Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific NIR probe for the noninvasive semiquantitative imaging of HER2 expression in vivo.
European Journal of Nuclear Medicine and Molecular Imaging | 2008
Gabriela Kramer-Marek; Dale O. Kiesewetter; Lucia Martiniova; Elaine M. Jagoda; Sang Bong Lee; Jacek Capala
PurposeThe expression of human epidermal growth factor receptor-2 (HER2) receptors in cancers is correlated with a poor prognosis. If assessed in vivo, it could be used for selection of appropriate therapy for individual patients and for monitoring of the tumor response to targeted therapies. We have radiolabeled a HER2-binding Affibody molecule with fluorine-18 for in vivo monitoring of the HER2 expression by positron emission tomography (PET).Materials and methodsThe HER2-binding ZHER2:342-Cys Affibody molecule was conjugated with N-2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). The in vitro binding of the resulting radioconjugate was characterized by receptor saturation and competition assays. For in vivo studies, the radioconjugate was injected into the tail vein of mice bearing subcutaneous HER2-positive or HER2-negative tumors. Some of the mice were pre-treated with non-labeled ZHER2:342−Cys. The animals were sacrificed at different times post-injection, and the radioactivity in selected tissues was measured. PET images were obtained using an animal PET scanner.ResultsIn vitro experiments indicated specific, high-affinity binding to HER2. PET imaging revealed a high accumulation of the radioactivity in the tumor as early as 20 min after injection, with a plateau being reached after 60 min. These results were confirmed by biodistribution studies demonstrating that, as early as 1 h post-injection, the tumor to blood concentration ratio was 7.5 and increased to 27 at 4 h. Pre-saturation of the receptors with unlabeled ZHER2:342-Cys lowered the accumulation of radioactivity in HER2-positive tumors to the levels observed in HER2-negative ones.ConclusionOur results suggest that the [18F]FBEM-ZHER2:342 radioconjugate can be used to assess HER2 expression in vivo.
The Journal of Nuclear Medicine | 2009
Gabriela Kramer-Marek; Dale O. Kiesewetter; Jacek Capala
In vivo imaging of human epidermal growth factor receptor type 2 (HER2) expression may allow direct assessment of HER2 status in tumor tissue and provide a means to quantify changes in receptor expression after HER2-targeted therapies. This work describes the in vivo characterization of the HER2-specific N-2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM)–ZHER2:342 Affibody molecule and its application to study the effect of 17 (dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) on HER2 expression by PET. Methods: To assess the correlation of signal observed by PET with receptor expression, we administered the tracer to athymic nude mice bearing subcutaneous human breast cancer xenografts with different levels of HER2 expression. To study the downregulation of HER2, we treated the mice with 4 doses (40 mg/kg) of 17-DMAG, an inhibitor of heat-shock protein 90, known to decrease HER2 expression. The animals were scanned before and after treatment. After the last scan, the mice were euthanized and tumors were frozen for receptor analysis. Results: The tracer was eliminated quickly from the blood and normal tissues, providing high tumor-to-blood and tumor-to-muscle ratios as early as 20 min after injection. The high-contrast images between normal and tumor tissue were recorded for BT474 and MCF7/clone18 tumors. Low but still detectable uptake was observed for MCF7 tumors, and none for MDA-MB-468. The signal correlated with the receptor expression as assessed by immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay. The levels of HER2 expression estimated by post-treatment PET decreased 71% (P < 4 × 10−6) and 33% (P < 0.002), respectively, for mice bearing BT474 and MCF7/clone18 tumors. These changes were confirmed by the biodistribution studies, enzyme-linked immunosorbent assay, and Western blot. Conclusion: Our results suggest that the described 18F-FBEM–ZHER2:342 Affibody molecule can be used to assess HER2 expression in vivo by PET and monitor possible changes of receptor expression in response to therapeutic interventions.
Journal of Liposome Research | 2008
Anu Puri; Gabriela Kramer-Marek; Ryan Campbell-Massa; Amichai Yavlovich; Shrikant C. Tele; Sang-Bong Lee; Jeffrey D. Clogston; Anil K. Patri; Robert Blumenthal; Jacek Capala
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (ZHER2:342-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as “Affisomes” were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80–100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41°C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16–20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4–12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were ∼70% at a protein-lipid ratio of 20 μg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, λex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90–100%) at 41°C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm ∼0°C) under similar conditions released only 5–10% calcein at 41°C. Affisomes, when stored at room temperature, retained > 90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.
BMC Cancer | 2012
Makoto Mitsunaga; Takahito Nakajima; Kohei Sano; Gabriela Kramer-Marek; Peter L. Choyke; Hisataka Kobayashi
BackgroundNear infrared (NIR) photoimmunotherapy (PIT) is a new type of cancer treatment based on a monoclonal antibody (mAb)-NIR phthalocyanine dye, (IR700) conjugate. In vitro cancer-specific cell death occurs during NIR light exposure in cells previously incubated with mAb-IR700 conjugates. However, documenting rapid cell death in vivo is more difficult.MethodsA luciferase-transfected breast cancer cell (epidermal growth factor receptor+, MDA-MB-468luc cells) was produced and used for both in vitro and in vivo experiments for monitoring the cell killing effect of PIT. After validation of cytotoxicity with NIR exposure up to 8 J/cm2in vitro, we employed an orthotopic breast cancer model of bilateral MDA-MB-468luc tumors in female athymic mice, which subsequently received a panitumumab-IR700 conjugate in vivo. One side was used as a control, while the other was treated with NIR light of dose ranging from 50 to 150 J/cm2. Bioluminescence imaging (BLI) was performed before and after PIT.ResultsDose-dependent cell killing and regrowth was successfully monitored by the BLI signal in vitro. Although tumor sizes were unchanged, BLI signals decreased by >95% immediately after PIT in vivo when light intensity was high (>100 J/cm2), however, in mice receiving lower intensity NIR (50 J/cm2), tumors recurred with gradually increasing BLI signal.ConclusionPIT induced massive cell death of targeted tumor cells immediately after exposure of NIR light that was demonstrated with BLI in vivo.
Radiation Research | 2009
Nicole Y. Morgan; Gabriela Kramer-Marek; Paul D. Smith; Kevin Camphausen; Jacek Capala
Abstract Morgan, N. Y., Kramer-Marek, G., Smith, P. D., Camphausen, K. and Capala, J. Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters. Radiat. Res. 171, 236–244 (2009). The recent demonstration of nanoscale scintillators has led to interest in the combination of radiation and photodynamic therapy. In this model, scintillating nanoparticles conjugated to photosensitizers and molecular targeting agents would enhance the targeting and improve the efficacy of radiotherapy and extend the application of photodynamic therapy to deeply seated tumors. In this study, we calculated the physical parameters required for these nanoparticle conjugates to deliver cytotoxic levels of singlet oxygen at therapeutic radiation doses, drawing on the published literature from several disparate fields. Although uncertainties remain, it appears that the light yield of the nanoscintillators, the efficiency of energy transfer to the photosensitizers, and the cellular uptake of the nanoparticles all need to be fairly well optimized to observe a cytotoxic effect. Even so, the efficacy of the combination therapy will likely be restricted to X-ray energies below 300 keV, which limits the application to brachytherapy.
Journal of Immunotherapy | 2009
Rafal Zielinski; Ilya Lyakhov; Amy Jacobs; Oleg Chertov; Gabriela Kramer-Marek; Nicholas Francella; Andrew G. Stephen; Robert J. Fisher; Robert Blumenthal; Jacek Capala
Expression of the human epidermal growth factor receptor 2 (HER2) is amplified in 25% to 30% of breast cancers and has been associated with an unfavorable prognosis. Here we report the construction, purification, and characterization of Affitoxin—a novel class of HER2-specific cytotoxic molecules combining HER2-specific Affibody molecule as a targeting moiety and PE38KDEL, which is a truncated version of Pseudomonas exotoxin A, as a cell killing agent. It is highly soluble and does not require additional refolding, oxidation, or reduction steps during its purification. Using surface plasmon resonance technology and competitive binding assays, we have shown that Affitoxin binds specifically to HER2 with nanomolar affinity. We have also observed a high correlation between HER2 expression and retention of Affitoxin bound to the cell surface. Affitoxin binding and internalization is followed by Pseudomonas exotoxin A activity domain-mediated ADP-ribosylation of translation elongation factor 2 and, consequently, inhibition of protein synthesis as shown by protein expression analysis of HER2-positive cells treated with Affitoxin. Measured IC50 value for HER2-negative cells MDA-MB468 (65±2.63 pM) was more than 20 times higher than the value for low HER2 level-expressing MCF7 cells (2.56±0.1 pM), and almost 3 orders of magnitude higher for its HER2-overexpressing derivative MCF7/HER2 (62.7±5.9 fM). These studies suggest that Affitoxin is an attractive PE38-based candidate for treatment of HER2-positive tumors.
BioMed Research International | 2017
Wojciech Szopa; Thomas A. Burley; Gabriela Kramer-Marek; Wojciech Kaspera
Glioblastoma (GBM) is a primary neuroepithelial tumor of the central nervous system, characterized by an extremely aggressive clinical phenotype. Patients with GBM have a poor prognosis and only 3–5% of them survive for more than 5 years. The current GBM treatment standards include maximal resection followed by radiotherapy with concomitant and adjuvant therapies. Despite these aggressive therapeutic regimens, the majority of patients suffer recurrence due to molecular heterogeneity of GBM. Consequently, a number of potential diagnostic, prognostic, and predictive biomarkers have been investigated. Some of them, such as IDH mutations, 1p19q deletion, MGMT promoter methylation, and EGFRvIII amplification are frequently tested in routine clinical practice. With the development of sequencing technology, detailed characterization of GBM molecular signatures has facilitated a more personalized therapeutic approach and contributed to the development of a new generation of anti-GBM therapies such as molecular inhibitors targeting growth factor receptors, vaccines, antibody-based drug conjugates, and more recently inhibitors blocking the immune checkpoints. In this article, we review the exciting progress towards elucidating the potential of current and novel GBM biomarkers and discuss their implications for clinical practice.
The Journal of Nuclear Medicine | 2012
Elaine M. Jagoda; Lixin Lang; Veerendra Bhadrasetty; Stephanie Histed; Mark C. Williams; Gabriela Kramer-Marek; Esther Mena; Lauren Rosenblum; Jan Marik; Jeffrey Tinianow; Mark Merchant; Lawrence P. Szajek; Chang Paik; Fabiola Cecchi; Kristen Raffensperger; Joe-Marie Jose-Dizon; Donald P. Bottaro; Peter L. Choyke
The overexpression and overactivation of hepatocyte growth factor receptor (Met) in various cancers has been linked to increased proliferation, progression to metastatic disease, and drug resistance. Developing a PET agent to assess Met expression would aid in the diagnosis and monitoring of responses to Met-targeted therapies. In these studies, onartuzumab, the experimental therapeutic 1-armed monoclonal antibody, was radiolabeled with 76Br or 89Zr and evaluated as an imaging agent in Met-expressing cell lines and mouse xenografts. Methods: 89Zr-desferrioxamine (df)-onartuzumab was synthesized using a df-conjugate; 76Br-onartuzumab was labeled directly. Met-binding studies were performed using the human tumor–derived cell lines MKN-45, SNU-16, and U87-MG, which have relatively high, moderate, and low levels of Met, respectively. Biodistribution and small-animal PET studies were performed in MKN-45 and U87-MG xenografts. Results: 76Br-onartuzumab and 89Zr-df-onartuzumab exhibited specific, high-affinity Met binding (in the nanomolar range) that was concordant with established Met expression levels. In MKN-45 (gastric carcinoma) xenografts, both tracers cleared slowly from nontarget tissues, with the highest uptake in tumor, blood, kidneys, and lungs. 76Br-onartuzumab MKN-45 tumor uptake remained relatively constant from 18 h (5 percentage injected dose per gram of tissue [%ID/g]) to 48 h (3 %ID/g) and exhibited tumor-to-muscle ratios ranging from 4:1 to 6:1. In contrast, 89Zr-df-onartuzumab MKN-45 tumor uptake continued to accumulate from 18 h (10 %ID/g) to 120 h (23 %ID/g), attaining tumor-to-muscle ratios ranging from 20:1 to 27:1. MKN-45 tumors were easily visualized in imaging studies with both tracers at 18 h, but after 48 h 89Zr-df-onartuzumab image quality improved, with at least 2-fold-greater tumor uptake than nontarget tissues. MKN-45 tumor uptake for both tracers correlated significantly with tumor mass and Met expression and was not affected by the presence of plasma shed Met. Conclusion: 89Zr-df-onartuzumab and 76Br-onartuzumab specifically targeted Met in vitro and in vivo; 89Zr-df-onartuzumab achieved higher tumor uptake and tumor-to-muscle ratios than 76Br-onartuzumab at later times, suggesting that 89Zr-df-onartuzumab would be better suited to image Met for diagnostic and prognostic purposes.
Journal of Photochemistry and Photobiology B-biology | 2009
Kinga Nawalany; Aleksandra Rusin; Mariusz Kepczynski; Alexei Mikhailov; Gabriela Kramer-Marek; Mirosław Śnietura; J. Połtowicz; Zdzisław Krawczyk; Maria Nowakowska
Two photosensitizing systems: (1) tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) encapsulated in sterically stabilized liposomes (SSL) and (2) p-THPP functionalized by covalent attachment of poly(ethylene glycol) (p-THPP-PEG(2000)) were studied in vitro. The dark and photo cytotoxicity of these systems were evaluated on two cell lines: HCT 116, a human colorectal carcinoma cell line, and DU 145, a prostate cancer cell line and compared with these determined for free p-THPP. It was demonstrated that both encapsulation in liposomes as well as attachment of PEG chain result in pronounced reduction of the dark cytotoxicity of the parent porphyrin. The liposomal formulation showed higher than p-THPP-PEG(2000) photocytotoxicity towards both cell lines used in the studies.