Gabriela S. Lorite
University of Oulu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriela S. Lorite.
Colloids and Surfaces B: Biointerfaces | 2014
Maria Persson; Gabriela S. Lorite; Hanna Kokkonen; Sung-Woo Cho; Petri Lehenkari; Mikael Skrifvars; Juha Tuukkanen
The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the materials ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications.
Chemsuschem | 2016
Tuula Selkälä; Juho Antti Sirviö; Gabriela S. Lorite; Henrikki Liimatainen
Deep eutectic solvents (DESs) are green chemicals that have the potential to replace traditional solvents in chemical reactions. In this study, urea-LiCl DES was used successfully as a reaction medium in the anionic functionalization of wood cellulose with succinic anhydride. The effects of reaction temperature and time on the carboxyl content and yield were evaluated. The analyses of the degree of polymerization and crystallinity revealed that the DES was a nondegrading and nondissolving reaction medium. Three samples with the highest carboxyl contents were further nanofibrillated with a microfluidizer to diameters of 2-7 nm, as observed by atomic force microscopy. Samples treated at 70-80 °C for 2 h gave the best outcome and resulted in highly viscose and transparent gels. The sample treated at 90 °C contained larger nanoparticles and larger aggregates owing to the occurrence of possible side reactions but resulted in better thermal stability.
Scientific Reports | 2015
Tung N Ngoc Pham; Ajaikumar Samikannu; Jarmo Kukkola; Anne-Riikka Rautio; Olli Pitkänen; Aron Dombovari; Gabriela S. Lorite; Teemu Sipola; Géza Tóth; Melinda Mohl; Jyri-Pekka Mikkola; Krisztian Kordas
In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m2g−1 to ~345 m2g−1, while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.
Scientific Reports | 2016
Georgies Alene Asres; Aron Dombovari; Teemu Sipola; R. Puskás; Ákos Kukovecz; Zoltán Kónya; Alexey P. Popov; Jhih Fong Lin; Gabriela S. Lorite; Melinda Mohl; Géza Tóth; Anita Lloyd Spetz; Krisztian Kordas
In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom gated field effect transistor structures based on random networks of the hybrids show only minor modulation of the channel conductance upon applied gate voltage, which indicates poor electrical transport between the nanowires in the random films. On the other hand, the photo response of channel current holds promise for cost-efficient solution process fabrication of photodetector devices working in the visible spectral range.
Scientific Reports | 2017
Olli Pitkänen; Topias Järvinen; Hansong Cheng; Gabriela S. Lorite; Aron Dombovari; Lassi Rieppo; Saikat Talapatra; Hai M. Duong; G. Tóth; Koppány L. Juhász; Zoltán Kónya; Ákos Kukovecz; Pulickel M. Ajayan; Robert Vajtai; Krisztian Kordas
On-chip energy storage and management will have transformative impacts in developing advanced electronic platforms with built-in energy needs for operation of integrated circuits driving a microprocessor. Though success in growing stand-alone energy storage elements such as electrochemical capacitors (super and pseusocapacitors) on a variety of substrates is a promising step towards this direction. In this work, on-chip energy storage is demonstrated using architectures of highly aligned vertical carbon nanotubes (CNTs) acting as supercapacitors, capable of providing large device capacitances. The efficiency of these structures is further increased by incorporating electrochemically active nanoparticles such as MnOx to form pseudocapacitive architectures thus enhancing device capacitance areal specific capacitance of 37 mF/cm2. The demonstrated on-chip integration is up and down-scalable, compatible with standard CMOS processes, and offers lightweight energy storage what is vital for portable and autonomous device operation with numerous advantages as compared to electronics built from discrete components.
Topics in Catalysis | 2015
Krisztian Kordas; Anne-Riikka Rautio; Gabriela S. Lorite; Melinda Mohl; Päivi Mäki-Arvela; Jyri-Pekka Mikkola; Dmitry Yu. Murzin; Liehui Ge; Pulickel M. Ajayan; Robert Vajtai
Abstract Metal nanoparticles supported on surfaces often undergo sintering even at moderate temperatures. The degree of sintering is typically influenced by the surface chemistry indicating that besides the commonly believed Ostwald ripening also other processes associated with metal surface diffusion are responsible for the nanoparticle size growth. In addition to the deterioration in metal dispersion, carbon supports can show chemical instability leading to their partial degradation in the proximity of the nanoparticles both in reducing and oxidizing environments at elevated temperatures. This work reports a study of Pd, Pt and Ni nanoparticles anchored on carbon (activated carbon, graphite and carbon nanotubes) as well as titania (nanoparticles and microparticles) surfaces frequently applied as catalyst materials in heterogeneous catalysis and photocatalysis, and evaluate the potential events causing metal sintering and degradation of the supports using transmission electron microscopy analysis.
Nano Research | 2018
Georgies Alene Asres; José J. Baldoví; Aron Dombovari; Topias Järvinen; Gabriela S. Lorite; Melinda Mohl; Andrey Shchukarev; Alejandro Pérez Paz; Lede Xian; Jyri-Pekka Mikkola; Anita Lloyd Spetz; Heli Jantunen; Angel Rubio; Krisztian Kordas
Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH3, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.
Scientific Reports | 2018
Rashad Hajimammadov; Alexander Bykov; Alexey P. Popov; Koppány L. Juhász; Gabriela S. Lorite; Melinda Mohl; Ákos Kukovecz; Mika Huuhtanen; Krisztian Kordas
The rapid oxide formation on pristine unprotected copper surfaces limits the direct application of Cu nanomaterials in electronics and sensor assemblies with physical contacts. However, it is not clear whether the growing cuprous (Cu2O) and cupric oxides (CuO) and the formation of core-shell-like Cu-Cu2O/CuO nanowires would cause any compromise for non-contact optical measurements, where light absorption and subsequent charge oscillation and separation take place such as those in surface plasmon-assisted and photocatalytic processes, respectively. Therefore, we analyze how the surface potential of hydrothermally synthetized copper nanowires changes as a function of time in ambient conditions using Kelvin probe force microscopy in dark and under light illumination to reveal charge accumulation on the nanowires and on the supporting gold substrate. Further, we perform finite element modeling of the optical absorption to predict plasmonic behavior of the nanostructures. The results suggest that the core-shell-like Cu-Cu2O/CuO nanowires may be useful both in photocatalytic and in surface plasmon-enhanced processes. Here, by exploiting the latter, we show that regardless of the native surface oxide formation, random networks of the nanowires on gold substrates work as excellent amplification media for surface-enhanced Raman spectroscopy as demonstrated in sensing of Rhodamine 6G dye molecules.
Applied Physics Letters | 2018
Georgies Alene Asres; Topias Järvinen; Gabriela S. Lorite; Melinda Mohl; Olli Pitkänen; Aron Dombovari; Géza Tóth; Anita Lloyd Spetz; Robert Vajtai; Pulickel M. Ajayan; Sidong Lei; Saikat Talapatra; Krisztian Kordas
van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and mult ...
ACS Applied Materials & Interfaces | 2013
Maria Persson; Gabriela S. Lorite; Sung-Woo Cho; Juha Tuukkanen; Mikael Skrifvars