Gabriela Stiegler
University of Agriculture, Faisalabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriela Stiegler.
Nature Medicine | 2000
John R. Mascola; Gabriela Stiegler; Thomas C. VanCott; Hermann Katinger; Calvin B. Carpenter; Chris E. Hanson; Holly Beary; Deborah Hayes; Sarah S. Frankel; Deborah L. Birx; Mark G. Lewis
The development of the human immunodeficiency virus-1 (HIV-1)/simian immunodeficiency virus (SIV) chimeric virus macaque model (SHIV) permits the in vivo evaluation of anti-HIV-1 envelope glycoprotein immune responses. Using this model, others, and we have shown that passively infused antibody can protect against an intravenous challenge. However, HIV-1 is most often transmitted across mucosal surfaces and the intravenous challenge model may not accurately predict the role of antibody in protection against mucosal exposure. After controlling the macaque estrous cycle with progesterone, anti-HIV-1 neutralizing monoclonal antibodies 2F5 and 2G12, and HIV immune globulin were tested. Whereas all five control monkeys displayed high plasma viremia and rapid CD4 cell decline, 14 antibody-treated macaques were either completely protected against infection or against pathogenic manifestations of SHIV-infection. Infusion of all three antibodies together provided the greatest amount of protection, but a single monoclonal antibody, with modest virus neutralizing activity, was also protective. Compared with our previous intravenous challenge study with the same virus and antibodies, the data indicated that greater protection was achieved after vaginal challenge. This study demonstrates that antibodies can affect transmission and subsequent disease course after vaginal SHIV-challenge; the data begin to define the type of antibody response that could play a role in protection against mucosal transmission of HIV-1.
Nature Medicine | 2000
Timothy W. Baba; Vladimir Liska; Regina Hofmann-Lehmann; Josef Vlasak; Weidong Xu; Seyoum Ayehunie; Lisa A. Cavacini; Marshall R. Posner; Hermann Katinger; Gabriela Stiegler; Bruce J. Bernacky; Tahir A. Rizvi; Russell D. Schmidt; Lori R. Hill; Michale E. Keeling; Yichen Lu; Joel E. Wright; Ting Chao Chou; Ruth M. Ruprecht
Although maternal human immunodeficiency virus type 1 (HIV-1) transmission occurs during gestation, intrapartum and postpartum (by breast-feeding), 50–70% of all infected children seem to acquire HIV-1 shortly before or during delivery. Epidemiological evidence indicates that mucosal exposure is an important aspect of intrapartum HIV transmission. A simian immunodeficiency virus (SIV) macaque model has been developed that mimics the mucosal exposure that can occur during intrapartum HIV-1 transmission. To develop immunoprophylaxis against intrapartum HIV-1 transmission, we used SHIV–vpu+ (refs. 5,6), a chimeric simian–human virus that encodes the env gene of HIV-IIIB. Several combinations of human monoclonal antibodies against HIV-1 have been identified that neutralize SHIV–vpu+ completely in vitro through synergistic interaction. Here, we treated four pregnant macaques with a triple combination of the human IgG1 monoclonal antibodies F105, 2G12 and 2F5. All four macaques were protected against intravenous SHIV–vpu+ challenge after delivery. The infants received monoclonal antibodies after birth and were challenged orally with SHIV–vpu+ shortly thereafter. We found no evidence of infection in any infant during 6 months of follow-up. This demonstrates that IgG1 monoclonal antibodies protect against mucosal lentivirus challenge in neonates. We conclude that epitopes recognized by the three monoclonal antibodies are important determinants for achieving substantial protection, thus providing a rational basis for AIDS vaccine development.
Journal of Virology | 2001
Michael B. Zwick; Aran Frank Labrijn; Meng Wang; Catherine Spenlehauer; Erica Ollmann Saphire; James M. Binley; John P. Moore; Gabriela Stiegler; Hermann Katinger; Dennis R. Burton; Paul W. H. I. Parren
ABSTRACT The identification and epitope mapping of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (Abs) is important for vaccine design, but, despite much effort, very few such Abs have been forthcoming. Only one broadly neutralizing anti-gp41 monoclonal Ab (MAb), 2F5, has been described. Here we report on two MAbs that recognize a region immediately C-terminal of the 2F5 epitope. Both MAbs were generated from HIV-1-seropositive donors, one (Z13) from an antibody phage display library, and one (4E10) as a hybridoma. Both MAbs recognize a predominantly linear and relatively conserved epitope, compete with each other for binding to synthetic peptide derived from gp41, and bind to HIV-1MN virions. By flow cytometry, these MAbs appear to bind relatively weakly to infected cells and this binding is not perturbed by pretreatment of the infected cells with soluble CD4. Despite the apparent linear nature of the epitopes of Z13 and 4E10, denaturation of recombinant envelope protein reduces the binding of these MAbs, suggesting some conformational requirements for full epitope expression. Most significantly, Z13 and 4E10 are able to neutralize selected primary isolates from diverse subtypes of HIV-1 (e.g., subtypes B, C, and E). The results suggest that a rather extensive region of gp41 close to the transmembrane domain is accessible to neutralizing Abs and could form a useful target for vaccine design.
Journal of Virology | 2004
James M. Binley; Terri Wrin; Bette Korber; Michael B. Zwick; Meng Wang; Colombe Chappey; Gabriela Stiegler; Renate Kunert; Susan Zolla-Pazner; Hermann Katinger; Christos J. Petropoulos; Dennis R. Burton
ABSTRACT Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV+ plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (≤7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV+ plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.
AIDS Research and Human Retroviruses | 2001
Gabriela Stiegler; Renate Kunert; Martin Purtscher; Susanne Wolbank; Regina Voglauer; Franz Steindl; Hermann Katinger
We have established a panel of human monoclonal antibodies against human immunodeficiency virus type 1 (HIV-1). The antibodies 2F5 and 2G12 have been identified to be two of the most potently in vitro neutralizing antibodies against HIV-1. Here we report on a further antibody, 4E10, of similar in vitro neutralizing potency. 4E10 binds to a novel epitope C terminal of the ELDKWA sequence recognized by 2F5, which has been so far the only described broadly neutralizing anti-gp41 antibody. Both 4E10 and 2F5 bind only weakly to infected cells compared with gp120-specific 2G12 and polyclonal anti-HIV-1 immunoglobulin (HIVIG), but show potent in vitro neutralizing properties. 4E10 neutralizes potently not only tissue culture-adapted strains but also primary isolates of different clades, including A, B, C, D, and E. Viruses that were found to be resistant to 2F5 were neutralized by 4E10 and vice versa; none of the tested isolates was resistant to both anti-gp41 antibodies. This confirms that the region recognized by 2F5 and 4E10 is essential for viral infectivity and may be important for vaccine design. Moreover, our results suggest that 4E10 should be further investigated for passive anti-HIV immunotherapy.
Nature Medicine | 2005
Alexandra Trkola; Herbert Kuster; Peter Rusert; Beda Joos; Marek Fischer; Christine Leemann; Amapola Manrique; Michael Huber; Manuela Rehr; Annette Oxenius; Rainer Weber; Gabriela Stiegler; Brigitta Vcelar; Hermann Katinger; Leonardo Aceto; Huldrych F. Günthard
To determine the protective potential of the humoral immune response against HIV-1 in vivo we evaluated the potency of three neutralizing antibodies (2G12, 2F5 and 4E10) in suppressing viral rebound in six acutely and eight chronically HIV-1–infected individuals undergoing interruption of antiretroviral treatment (ART). Only two of eight chronically infected individuals showed evidence of a delay in viral rebound during the passive immunization. Rebound in antibody-treated acutely infected individuals upon cessation of ART was substantially later than in a control group of 12 individuals with acute infection. Escape mutant analysis showed that the activity of 2G12 was crucial for the in vivo effect of the neutralizing antibody cocktail. By providing further direct evidence of the potency, breadth and titers of neutralizing antibodies that are required for in vivo activity, these data underline both the potential and the limits of humoral immunity in controlling HIV-1 infection.
Plant Biotechnology Journal | 2008
Richard Strasser; Johannes Stadlmann; Matthias Schähs; Gabriela Stiegler; Heribert Quendler; Lukas Mach; Josef Glössl; Koen Weterings; Martin Pabst; Herta Steinkellner
A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.
Journal of Virology | 2005
Michael B. Zwick; Richard Jensen; Sarah Church; Meng Wang; Gabriela Stiegler; Renate Kunert; Hermann Katinger; Dennis R. Burton
ABSTRACT The conserved membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of two broadly neutralizing human monoclonal antibodies, 2F5 and 4E10, and is an important lead for vaccine design. However, immunogens that bear MPER epitopes so far have not elicited neutralizing antibodies in laboratory animals. One explanation is that the immunogens fail to recreate the proper molecular environment in which the epitopes of 2F5 and 4E10 are presented on the virus. To explore this molecular environment, we used alanine-scanning mutagenesis across residues 660 to 680 in the MPER of a pseudotyped variant of HIV-1JR-FL, designated HIV-1JR2, and examined the ability of 2F5 and 4E10 to neutralize the Ala mutant viruses. The results show that the only changes to produce neutralization resistance to 2F5 occurred in residue D, K, or W of the core epitope (LELDKWANL). Likewise, 4E10 resistance arose by replacing one of three residues; two (W and F) were in the core epitope, and one (W) was seven residues C-terminal to these two (NWFDISNWLW). Importantly, no single substitution resulted in resistance of virus to both 2F5 and 4E10. Surprisingly, 8 out of 21 MPER Ala mutants were more sensitive than the parental pseudovirus to 2F5 and/or 4E10. At most, only small differences in neutralization sensitivity to anti-gp120 monoclonal antibody b12 and peptide T20 were observed with the MPER Ala mutant pseudoviruses. These data suggest that MPER substitutions can act locally and enhance the neutralizing activity of antibodies to this region and imply a distinct role of the MPER of gp41 during HIV-1 envelope-mediated fusion. Neutralization experiments showing synergy between and T20 and 4E10 against HIV-1 are also presented. The data presented may aid in the design of antigens that better present the MPER of gp41 to the immune system.
Journal of Virology | 2001
Michael B. Zwick; Meng Wang; Pascal Poignard; Gabriela Stiegler; Hermann Katinger; Dennis R. Burton; Paul W. H. I. Parren
ABSTRACT Several reports have described the existence of synergy between neutralizing monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 (HIV-1). Synergy between human MAbs b12, 2G12, 2F5, and 4E10 in neutralization of primary isolates is of particular interest. Neutralization synergy of these MAbs, however, has not been studied extensively, and the mechanism of synergy remains unclear. We investigated neutralization synergy among this human antibody set by using the classical approach of titrating antibodies mixed at a fixed ratio as well as by an alternative, variable ratio approach in which the neutralization curve of one MAb is assessed in the presence and absence of a fixed, weakly neutralizing concentration of a second antibody. The advantage of this second approach is that it does not require mathematical analysis to establish synergy. No neutralization enhancement of any of the MAb combinations tested was detected for the T-cell-line-adapted molecular HIV-1 clone HxB2 using both assay formats. Studies of primary isolates (89.6, SF162, and JR-CSF) showed neutralization synergy which was relatively weak, with a maximum of two- to fourfold enhancement between antibody pairs, thereby increasing neutralization titers about 10-fold in triple and quadruple antibody combinations. Analysis of b12 and 2G12 binding to oligomeric envelope glycoprotein by using flow cytometry failed to demonstrate cooperativity in binding between these two antibodies. The mechanism by which these antibodies synergize is, therefore, not yet understood. The results lend some support to the notion that an HIV-1 vaccine that elicits moderate neutralizing antibodies to multiple epitopes may be more effective than hereto supposed, although considerable caution in extrapolating to a vaccine situation is required.
Journal of Virology | 2001
Regina Hofmann-Lehmann; Josef Vlasak; Robert A. Rasmussen; Smith B; Timothy W. Baba; Vladimir Liska; Flavia Ferrantelli; David C. Montefiori; Harold M. McClure; Daniel C. Anderson; Bruce J. Bernacky; Tahir A. Rizvi; Russell D. Schmidt; Lori R. Hill; Michale E. Keeling; Hermann Katinger; Gabriela Stiegler; Lisa A. Cavacini; Marshall R. Posner; Ting-Chao Chou; Janet Andersen; Ruth M. Ruprecht
ABSTRACT To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351–357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu+challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200–206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu+ challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encodingenv of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4+ T-cell decline. In contrast, all control animals had dramatic drops in their CD4+ T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1.