Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Babini is active.

Publication


Featured researches published by Gabriele Babini.


Scientific Reports | 2016

The origin of neutron biological effectiveness as a function of energy

G. Baiocco; Sofia Barbieri; Gabriele Babini; Jacopo Morini; Daniele Alloni; Werner Friedland; Pavel Kundrát; E. Schmitt; Monika Puchalska; Lembit Sihver; A. Ottolenghi

The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data.


Scientific Reports | 2015

In vitro γ-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures

Gabriele Babini; Jacopo Morini; G. Baiocco; Luca Mariotti; A. Ottolenghi

The inflammatory pathway has a pivotal role in regulating the fate and functions of cells after a wide range of stimuli, including ionizing radiation. However, the molecular mechanisms governing such responses have not been completely elucidated yet. In particular, the complex activation dynamics of the Nuclear transcription Factor kB (NF-kB), the key molecule governing the inflammatory pathway, still lacks a complete characterization. In this work we focused on the activation dynamics of the NF-kB (subunit p65) pathway following different stimuli. Quantitative measurements of NF-kB were performed and results interpreted within a systems theory approach, based on the negative feedback loop feature of this pathway. Time-series data of nuclear NF-kB concentration showed no evidence of γ-ray induced activation of the pathway for doses up to 5Gy but highlighted important transient effects of common environmental stress (e.g. CO2, temperature) and laboratory procedures, e.g. replacing the culture medium, which dominate the in vitro inflammatory response.


Radiation Research | 2016

Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation

Monika Hauptmann; Siamak Haghdoost; Maria Gomolka; Hakan Sarioglu; Marius Ueffing; Anne Dietz; Ulrike Kulka; Kristian Unger; Gabriele Babini; Mats Harms-Ringdahl; A. Ottolenghi; Sabine Hornhardt

It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40–140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation.


Radiation Protection Dosimetry | 2015

Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release

Gabriele Babini; V. E. Bellinzona; Jacopo Morini; G. Baiocco; L. Mariotti; Kristian Unger; A. Ottolenghi

The aim of the present work was to investigate the mechanisms of radiation-induced bystander signalling leading to apoptosis in non-irradiated co-cultured cells. Cultured non-transformed cells were irradiated, and the effect on the apoptosis rate on co-cultured non-irradiated malignant cells was determined. For this, two different levels of the investigation are presented, i.e. release of signalling proteins and transcriptomic profiling of the irradiated and non-irradiated co-cultured cells. Concerning the signalling proteins, in this study, the attention was focussed on the release of the active and latent forms of the transforming growth factor-β1 protein. Moreover, global gene expression profiles of non-transformed and transformed cells in untreated co-cultures were compared with those of 0.5-Gy-irradiated non-transformed cells co-cultured with the transformed cells. The results show an effect of radiation on the release of signalling proteins in the medium, although no significant differences in release rates were detectable when varying the doses in the range from 0.25 to 1 Gy. Moreover, gene expression results suggest an effect of radiation on both cell populations, pointing out specific signalling pathways that might be involved in the enhanced induction of apoptosis.


Oncotarget | 2016

Ex vivo miRNome analysis in Ptch1+/- cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma.

Barbara Tanno; Gabriele Babini; Simona Leonardi; Paola Giardullo; Ilaria De Stefano; Emanuela Pasquali; A. Ottolenghi; Michael J. Atkinson; Anna Saran; Mariateresa Mancuso

It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer. Patched1 heterozygous (Ptch1+/−) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs). The high sensitivity of neonatal Ptch1+/− mice to radiogenic MB is dependent on deregulation of the Ptch1 gene function. Ptch1 activates a growth and differentiation programme that is a strong candidate for regulation through the non-coding genome. Therefore we carried out miRNA next generation sequencing in ex vivo irradiated and control GCPs, isolated and purified from cerebella of neonatal WT and Ptch1+/− mice. We identified a subset of miRNAs, namely let-7 family and miR-17∼92 cluster members, whose expression is altered in GCPs by radiation alone, or by synergistic interaction of radiation with Shh-deregulation. The same miRNAs were further validated in spontaneous and radiation-induced MBs from Ptch1+/− mice, confirming persistent deregulation of these miRNAs in the pathogenesis of MB. Our results support the hypothesis that miRNAs dysregulation is associated with radiosensitivity of GCPs and their neoplastic transformation in vivo.


Radiation Research | 2016

Nonlinear Radiation-Induced Cataract Using the Radiosensitive Ptch1+/– Mouse Model

Ilaria De Stefano; Paola Giardullo; Barbara Tanno; Simona Leonardi; Emanuela Pasquali; Gabriele Babini; Anna Saran; Mariateresa Mancuso

While most of the evidence for radiation-induced late health effects relates to cancer, there has been increasing interest recently in the development of non-cancer diseases, including lens opacity, observed in populations exposed to low-dose radiation. In a recent study, we reported that mice heterozygous for the Patched1 (Ptch1) gene represented a novel and powerful animal model for this disorder, and a useful tool for investigating the mechanisms of radiogenic cataract development. Given the ongoing and considerable uncertainty in allowable lens dose levels and the existence of a threshold for the development of cataracts, we tested the effects of a decreasing range of radiation doses (2 Gy, 1 Gy and 0.5 Gy X rays) by irradiating groups of Ptch1+/– mice at 2 days of age. Our findings showed that at this dose range, acute exposure of this highly susceptible mouse model did not induce macroscopically detectable cataracts, and only the 2 Gy irradiated mice showed microscopic alterations of the lens. Molecular analyses performed to evaluate the induction of epithelial-mesenchymal transition (EMT) and subsequent fibrotic alterations in mouse lens cells also indicated the existence of a dose threshold for such effects in the mouse model used. The mechanisms of cataractogenesis remain unclear, and further experimental studies are essential to elucidate those mechanisms specific for cataract initiation and development after irradiation, as well as the underlying genetic factors controlling cataract susceptibility.


Radiation Protection Dosimetry | 2015

Energy dependence of the complexity of DNA damage induced by carbon ions

D. Alloni; G. Baiocco; Gabriele Babini; Werner Friedland; Pavel Kundrát; L. Mariotti; A. Ottolenghi

To assess the complexity of DNA damage induced by carbon ions as a function of their energy and LET, 2-Gy irradiations by 100 keV u(-1)-400 MeV u(-1) carbon ions were investigated using the PARTRAC code. The total number of fragments and the yield of fragments of <30 bp were calculated. The authors found a particularly important contribution of DNA fragmentation in the range of <1 kbp for specific energies of <6 MeV u(-1). They also considered the effect of different specific energies with the same LET, i.e. before and after the Bragg peak. As a first step towards a full characterisation of secondary particle production from carbon ions interacting with tissue, a comparison between DNA-damage induction by primary carbon ions and alpha particles resulting from carbon break-up is presented, for specific energies of >1 MeV u(-1).


Radiation Protection Dosimetry | 2015

Radiosensitivity in lymphoblastoid cell lines derived from Shwachman-Diamond syndrome patients

Jacopo Morini; Gabriele Babini; L. Mariotti; G. Baiocco; L. Nacci; C. Maccario; U. Rößler; A. Minelli; M. Savio; Maria Gomolka; Ulrike Kulka; A. Ottolenghi; C. Danesino

Shwachman-Diamond syndrome is an autosomal-recessive disorder characterised by bone marrow failure and a cumulative risk of progression to acute myeloid leukaemia. The Shwachman-Bodian-Diamond syndrome (SBDS) gene, the only gene known to be causative of the pathology, is involved in ribosomal biogenesis, stress responses and DNA repair, and the lack of SBDS sensitises cells to many stressors and leads to mitotic spindle destabilisation. The effect of ionising radiation on SBDS-deficient cells was investigated using immortalised lymphocytes from SDS patients in comparison with positive and negative controls in order to test whether, in response to ionising radiation exposure, any impairment in the DNA repair machinery could be observed. After irradiating cells with different doses of X-rays or gamma-rays, DNA repair kinetics and the residual damages using the alkaline COMET assay and the γ-H2AX assay were assessed, respectively. In this work, preliminary data about the comparison between ionising radiation effects in different patients-derived cells and healthy control cells are presented.


Frontiers in Immunology | 2017

The Interplay between Radioresistant Caco-2 Cells and the Immune System Increases Epithelial Layer Permeability and Alters Signaling Protein Spectrum

Jacopo Morini; Gabriele Babini; Sofia Barbieri; G. Baiocco; A. Ottolenghi

Colorectal cancer is one of the most frequent type of cancer, with a higher incidence in the developed countries. Colorectal cancer is usually managed with both surgeries, chemotherapy and radiotherapy. Radiotherapy has the well-known advantage of targeting the tumor, minimizing normal tissue exposure. Nevertheless, during radiation treatment, exposure of healthy tissues is of great concern, in particular because of the effects on the intestinal barrier functions and on cells belonging to the immune system. The functional role of intestinal barrier in avoiding paracellular trafficking and controlling bacterial spread from gut it is well known and it is due to the presence of tight junction complexes. However, intestinal barrier is fundamental in participating to the interplay with immune system, especially considering the gut-associated lymphoid tissue. Until few years ago, radiotherapy was considered to bear only a depressive action on the immune system. However, it is now recognized that the release of pro-inflammatory signals and phenotypic changes in tumoral cells due to ionizing radiation could trigger the immune system against the tumor. In this work, we address how intestinal barrier functions are perturbed by X-ray doses in the range 0–10 Gy, focusing on the interplay between tumoral cells and the immune system. To this aim, we adopted a coculture model in which Caco-2 cells can be grown in presence/absence of peripheral blood mononuclear cells (PBMC). We focused our attention on changes in the proliferation, trans-epithelial electrical resistance (TEER), cytokine release, and proteins of the junctional complexes. Our results indicate a high radioresistance of Caco-2 in the investigated dose range, and an increased permeability of the tumoral cell layer due to the presence of PBMC. This is found to be correlated with activation of PBMC, inhibiting the apoptotic pathway, with the enhancement of cytokine release and with variation of tight junction scaffold protein expression levels, assumed to be related to IFN-γ- and TNF-α-mediated signaling.


Radiation Protection Dosimetry | 2015

Investigation of radiation-induced multilayered signalling response of the inflammatory pathway

Gabriele Babini; M. Ugolini; Jacopo Morini; G. Baiocco; L. Mariotti; P. Tabarelli de Fatis; M. Liotta; A. Ottolenghi

Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring non-irradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0-2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations.

Collaboration


Dive into the Gabriele Babini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilaria De Stefano

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge