Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Casadei is active.

Publication


Featured researches published by Gabriele Casadei.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Identification of novel antimicrobials using a live-animal infection model.

Terence I. Moy; Anthony R. Ball; Zafia Anklesaria; Gabriele Casadei; Frederick M. Ausubel

The alarming increase of antibiotic-resistant bacterial pathogens points to the need for novel therapeutic approaches to combat infection. To discover novel antimicrobials, we devised a screen to identify compounds that promoted the survival of the model laboratory nematode Caenorhabditis elegans infected with the human opportunistic pathogen Enterococcus faecalis. E. faecalis colonizes the nematode intestinal tract, forming a persistent lethal infection. Infected nematodes were rescued by antibiotic treatment in a dose-dependent manner, and antibiotic treatment markedly reduced the number of bacteria colonizing the nematode intestine. To facilitate high throughput screening of compound libraries, we adapted a previously developed agar-based C. elegans-E. faecalis infection assay so that it could be carried out in liquid medium in standard 96-well microtiter plates. We used this simple infection system to screen 6,000 synthetic compounds and 1,136 natural product extracts. We identified 16 compounds and 9 extracts that promoted nematode survival. Some of the compounds and extracts inhibited E. faecalis growth in vitro, but, in contrast to traditional antibiotics, the in vivo effective dose of many of these compounds was significantly lower than the minimum inhibitory concentration needed to prevent the growth of E. faecalis in vitro. Moreover, many of the compounds and extracts had little or no affect on in vitro bacterial growth. Our findings indicate that the whole-animal C. elegans screen identifies not only traditional antibiotics, but also compounds that target bacterial virulence or stimulate host defense.


ACS Chemical Biology | 2009

High Throughput Screen for Novel Antimicrobials using a Whole Animal Infection Model

Terence I. Moy; Annie L. Conery; Jonah Larkins-Ford; Gang Wu; Ralph Mazitschek; Gabriele Casadei; Anne E. Carpenter; Frederick M. Ausubel

The nematode Caenorhabditis elegans is a unique whole animal model system for identifying small molecules with in vivo anti-infective properties. C. elegans can be infected with a broad range of human pathogens, including Enterococcus faecalis, an important human nosocomial pathogen. Here, we describe an automated, high-throughput screen of 37,200 compounds and natural product extracts for those that enhance survival of C. elegans infected with E. faecalis. Using a robot to dispense live, infected animals into 384-well plates and automated microscopy and image analysis, we identified 28 compounds and extracts not previously reported to have antimicrobial properties, including six structural classes that cure infected C. elegans animals but do not affect the growth of the pathogen in vitro, thus acting by a mechanism of action distinct from antibiotics currently in clinical use.


Bioorganic & Medicinal Chemistry | 2009

Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group

Siritron Samosorn; Bongkot Tanwirat; Nussara Muhamad; Gabriele Casadei; Danuta Tomkiewicz; Apichart Suksamrarn; Therdsak Prammananan; Karina C. Gornall; Jennifer L. Beck; John B. Bremner

Conjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1H-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, 3. A series of simpler arylmethyl ether hybrid structures were also synthesized. The hybrid 3 showed excellent antibacterial activity (MIC Staphylococcus aureus, 1.7 microM), which was over 382-fold more active than the parent antibacterial berberine, against this bacterium. This compound was also shown to block the NorA efflux pump in S. aureus.


Bioorganic & Medicinal Chemistry Letters | 2008

Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus

Joseph I. Ambrus; Michael J. Kelso; John B. Bremner; Anthony R. Ball; Gabriele Casadei

The synthesis of 22 2-aryl-1H-indoles, including 12 new compounds, has been achieved via Pd- or Rh-mediated methodologies, or selective electrophilic substitution. All three methods were based on elaborations from simple indole precursors. SAR studies on these indoles and 2-phenyl-1H-indole in Staphylococcus aureus as NorA efflux pump inhibitors indicated 5-nitro-2-(3-methoxycarbonyl)phenyl-1H-indole was a slightly more potent inhibitor than the lead INF55. A promising new antibacterial lead compound against S. aureus (2-phenyl-1H-indol-5-yl)-methanol, was also found.


Antimicrobial Agents and Chemotherapy | 2010

Berberine-INF55 (5-Nitro-2-Phenylindole) Hybrid Antimicrobials: Effects of Varying the Relative Orientation of the Berberine and INF55 Components

Danuta Tomkiewicz; Gabriele Casadei; Jonah Larkins-Ford; Terence I. Moy; James A Garner; John B. Bremner; Frederik M Ausubel; Michael J. Kelso

ABSTRACT Hybrid antimicrobials containing an antibacterial linked to a multidrug resistance (MDR) pump inhibitor make up a promising new class of agents for countering efflux-mediated bacterial drug resistance. This study explores the effects of varying the relative orientation of the antibacterial and efflux pump inhibitor components in three isomeric hybrids (SS14, SS14-M, and SS14-P) which link the antibacterial alkaloid and known substrate for the NorA MDR pump berberine to different positions on INF55 (5-nitro-2-phenylindole), an inhibitor of NorA. The MICs for all three hybrids against wild-type, NorA-knockout, and NorA-overexpressing Staphylococcus aureus cells were found to be similar (9.4 to 40.2 μM), indicating that these compounds are not effectively effluxed by NorA. The three hybrids were also found to have similar curing effects in a Caenorhabditis elegans live infection model. Each hybrid was shown to accumulate in S. aureus cells to a greater extent than either berberine or berberine in the presence of INF55, and the uptake kinetics of SS14 were found to differ from those of SS14-M and SS14-P. The effects on the uptake and efflux of the NorA substrate ethidium bromide into S. aureus cells in the presence or absence of the hybrids were used to confirm MDR inhibition by the hybrids. MDR-inhibitory activity was confirmed for SS14-M and SS14-P but not for SS14. Molecular dynamics simulations revealed that SS14 prefers to adopt a conformation that is not prevalent in either SS14-M or SS14-P, which may explain why some properties of SS14 diverge from those of its two isomers. In summary, subtle repositioning of the pump-blocking INF55 moiety in berberine-INF55 hybrids was found to have a minimal effect on their antibacterial activities but to significantly alter their effects on MDR pumps.


Antimicrobial Agents and Chemotherapy | 2016

Occurrence of mcr-1 in Colistin-Resistant Salmonella enterica Isolates Recovered from Humans and Animals in Italy, 2012 to 2015.

Chiara Carnevali; Marina Morganti; Erika Scaltriti; Luca Bolzoni; Stefano Pongolini; Gabriele Casadei

The first case of plasmid-mediated resistance to colistin due to the mcr-1 gene was reported in China in late 2015 ([1][1]). Soon after, the same gene was detected by a number of retrospective analyses ([2][2]). Resistance to colistin is generally believed to be related to its use in animal


Antimicrobial Agents and Chemotherapy | 2014

A Screen for and Validation of Prodrug Antimicrobials

Laura E. Fleck; E. Jeffrey North; Richard E. Lee; Lawrence R. Mulcahy; Gabriele Casadei

ABSTRACT The rise of resistant pathogens and chronic infections tolerant to antibiotics presents an unmet need for novel antimicrobial compounds. Identifying broad-spectrum leads is challenging due to the effective penetration barrier of Gram-negative bacteria, formed by an outer membrane restricting amphipathic compounds, and multidrug resistance (MDR) pumps. In chronic infections, pathogens are shielded from the immune system by biofilms or host cells, and dormant persisters tolerant to antibiotics are responsible for recalcitrance to chemotherapy with conventional antibiotics. We reasoned that the dual need for broad-spectrum and sterilizing compounds could be met by developing prodrugs that are activated by bacterium-specific enzymes and that these generally reactive compounds could kill persisters and accumulate over time due to irreversible binding to targets. We report the development of a screen for prodrugs, based on identifying compounds that nonspecifically inhibit reduction of the viability dye alamarBlue, and then eliminate generally toxic compounds by testing for cytotoxicity. A large pilot of 55,000 compounds against Escherichia coli produced 20 hits, 3 of which were further examined. One compound, ADC111, is an analog of a known nitrofuran prodrug nitrofurantoin, and its activity depends on the presence of activating enzymes nitroreductases. ADC112 is an analog of another known antimicrobial tilbroquinol with unknown mechanism of action, and ADC113 does not belong to an approved class. All three compounds had a good spectrum and showed good to excellent activity against persister cells in biofilm and stationary cultures. These results suggest that screening for overlooked prodrugs may present a viable platform for antimicrobial discovery.


Applied and Environmental Microbiology | 2016

Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis.

Marina Morganti; Erika Scaltriti; Paolo Cozzolino; Luca Bolzoni; Gabriele Casadei; Marco Pierantoni; Emanuela Foni; Stefano Pongolini

ABSTRACT The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments.


Bioorganic & Medicinal Chemistry Letters | 2014

Diarylacylhydrazones: Clostridium-Selective Antibacterials with Activity Against Stationary-Phase Cells

Chao Chen; Naveen K. Dolla; Gabriele Casadei; John B. Bremner; Michael J. Kelso

Current antibiotics for treating Clostridium difficile infections (CDI), that is, metronidazole, vancomycin and more recently fidaxomicin, are mostly effective but treatment failure and disease relapse remain as significant clinical problems. The shortcomings of these agents are attributed to their low selectivity for C. difficile over normal gut microflora and their ineffectiveness against C. difficile spores. This Letter reports that certain diarylacylhydrazones identified during a high-throughput screening/counter-screening campaign show selective activity against two Clostridium species (C. difficile and Clostridium perfringens) over common gut commensals. Representative examples are shown to possess activity similar to vancomycin against clinical C. difficile strains and to kill stationary-phase C. difficile cells, which are responsible for spore production. Structure-activity relationships with additional synthesised analogues suggested a protonophoric mechanism may play a role in the observed activity/selectivity and this was supported by the well-known protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) showing selective anti-Clostridium effects and activity similar to diarylacylhydrazones against stationary-phase C. difficile cells. Two diarylacylhydrazones were shown to be non-toxic towards human FaDu and Hep G2 cells indicating that further studies with the class are warranted towards new drugs for CDI.


Eurosurveillance | 2018

Rise and fall of outbreak-specific clone inside endemic pulsotype of Salmonella 4,[5],12:i:-; insights from high-resolution molecular surveillance in Emilia-Romagna, Italy, 2012 to 2015

Marina Morganti; Luca Bolzoni; Erika Scaltriti; Gabriele Casadei; Elena Carra; Laura Rossi; Paola Gherardi; Fabio Faccini; Norma Arrigoni; Anna Rita Sacchi; Marco Delledonne; Stefano Pongolini

Background and aim Epidemiology of human non-typhoid salmonellosis is characterised by recurrent emergence of new clones of the pathogen over time. Some clonal lines of Salmonella have shaped epidemiology of the disease at global level, as happened for serotype Enteritidis or, more recently, for Salmonella 4,[5],12:i:-, a monophasic variant of serotype Typhimurium. The same clonal behaviour is recognisable at sub-serotype level where single outbreaks or more generalised epidemics are attributable to defined clones. The aim of this study was to understand the dynamics of a clone of Salmonella 4,[5],12:i:- over a 3-year period (2012–15) in a province of Northern Italy where the clone caused a large outbreak in 2013. Furthermore, the role of candidate outbreak sources was investigated and the accuracy of multilocus variable-number tandem repeat analysis (MLVA) was evaluated. Methods: we retrospectively investigated the outbreak through whole genome sequencing (WGS) and further monitored the outbreak clone for 2 years after its conclusion. Results: The study showed the transient nature of the clone in the population, possibly as a consequence of its occasional expansion in a food-processing facility. We demonstrated that important weaknesses characterise conventional typing methods applied to clonal pathogens such as Salmonella 4,[5],12:i:-, namely lack of accuracy for MLVA and inadequate resolution power for PFGE to be reliably used for clone tracking. Conclusions: The study provided evidence for the remarkable prevention potential of whole genome sequencing used as a routine tool in systems that integrate human, food and animal surveillance.

Collaboration


Dive into the Gabriele Casadei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siritron Samosorn

Srinakharinwirot University

View shared research outputs
Researchain Logo
Decentralizing Knowledge