Gabriele Curci
University of L'Aquila
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriele Curci.
Environmental Modelling and Software | 2010
A. Poupkou; T. M. Giannaros; Konstantinos Markakis; I. Kioutsioukis; Gabriele Curci; Dimitrios Melas; C. Zerefos
A grid-oriented Biogenic Emission Model (BEM) has been developed to calculate Non-Methane Volatile Organic Compound (NMVOC) emissions from vegetation in high spatial and temporal resolutions. The model allows the emissions calculation for any modeling domain covering Europe on the basis of: 1) the U.S. Geological Survey 1-km resolution land-use database, 2) a land-use specific, monthly isoprene, monoterpene and Other Volatile Organic Compound (OVOC) emission potentials and foliar biomass densities database, 3) temperature and solar radiation data provided by the mesoscale meteorological model MM5. The model was applied for Europe in 30-km spatial resolution for the year 2003. The European total emissions for 2003 consist of 33.0% isoprene, 25.5% monoterpenes and 41.5% OVOC. BEM results are compared with those from the well-documented global Model of Emissions of Gases and Aerosols from Nature (MEGAN). The BEM total emissions compare well with the MEGAN ones. In July 2003, the results of both models agree within a factor of 1.2 for total isoprene emissions and within a factor of 2 for total monoterpene emissions. The comparison of the spatial distributions of the July 2003 isoprene and monoterpene emissions calculated with BEM and MEGAN shows that, in the greater part of the study area, the differences are below the current uncertainty limit for the estimation of spatially-resolved biogenic VOC emissions in Europe being equal to about +/-600 kg km^-^2 month^-^1. Differences that are above this limit are found mainly in the eastern European countries for isoprene and in the Mediterranean countries for monoterpenes.
Atmospheric Chemistry and Physics | 2016
Efisio Solazzo; Roberto Bianconi; Christian Hogrefe; Gabriele Curci; Paolo Tuccella; Ummugulsum Alyuz; Alessandra Balzarini; Rocío Baró; Roberto Bellasio; Johannes Bieser; Jørgen Brandt; Jesper Christensen; Augistin Colette; Xavier Vazhappilly Francis; Andrea Fraser; Marta G. Vivanco; Pedro Jiménez-Guerrero; Ulas Im; Astrid Manders; Uarporn Nopmongcol; Nutthida Kitwiroon; Guido Pirovano; Luca Pozzoli; Marje Prank; Ranjeet S. Sokhi; Alper Unal; Greg Yarwood; Stefano Galmarini
Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overallsense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluaion methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.
Journal of Geophysical Research | 2015
Carlo Lacagnina; Otto P. Hasekamp; Huisheng Bian; Gabriele Curci; Gunnar Myhre; Twan van Noije; Michael Schulz; Ragnhild Bieltvedt Skeie; Toshihiko Takemura; Kai Zhang
The aerosol single-scattering albedo (SSA) over the global ocean is evaluated based on polarimetric measurements by the PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) satellite. For the first time, global ocean SSA and Absorption Aerosol Optical Depth (AAOD) from this instrument are shown and evaluated against other observations (the Aerosol Robotic Network, AERONET, and the Ozone Monitoring Instrument, OMI). The observational data sets compare reasonably well, with the majority of the colocated points within 0.05 of the AERONET measurements. PARASOL shows that SSA is characterized by high spatial and seasonal variability, also over the open ocean far from the inland emission regions. The near global coverage in the visible spectral range provided by the PARASOL retrievals represents a unique opportunity to evaluate aerosol optical properties simulated by global aerosol models, as performed in the Aerosol Comparisons between Observations and Models (AeroCom) framework. The SSA (AAOD) estimated by the AeroCom models is generally higher (smaller) than the SSA (AAOD) retrieved from PARASOL. On the other hand, the mean simulated aerosol optical depth is consistent or slightly underestimated compared with observations. An overestimate of the aerosol scattering, compared to absorption, by the models would suggest that these simulate an overly strong aerosol radiative cooling at top of atmosphere, over most of the ocean surfaces. This implies that aerosols have a potentially stronger direct and semidirect impact within the atmosphere than currently simulated.
Journal of Geophysical Research | 2017
Sampa Das; H. Harshvardhan; Huisheng Bian; Mian Chin; Gabriele Curci; Anna P. Protonotariou; T. Mielonen; Kai Zhang; Hailong Wang; Xiaohong Liu
Optically thick smoke aerosol plumes originating from biomass burning (BB) in the southwestern African Savanna during the austral spring are transported westward by the free-tropospheric winds to primarily overlie vast stretches of stratocumulus cloud decks in the South-East Atlantic. We evaluated the simulations of long-range transport of BB aerosol by the Goddard Earth Observing System (GEOS-5) and four other global aerosol models over the complete South African-Atlantic region using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations to find any distinguishing or common model biases. Models in general captured the vertical distribution of aerosol over land, but exhibited some common features after long-range transport of smoke plumes that were distinct from that of CALIOP. Most importantly, the model simulated BB aerosol plumes quickly descend to lower levels just off the western coast of the continent, while CALIOP data suggests that smoke plumes continue their horizontal transport at elevated levels above the marine boundary layer. This is crucial because the sign of simulated aerosol semi-direct effect can change depending on whether the bulk of the absorbing aerosols are present within or above the cloud levels in a model. The levels to which the aerosol plumes get subsided and the steepness of their descent vary amongst the models as well as amongst the different sub-regions of the domain. Investigations into possible causes of differences between GEOS-5 and CALIOP aerosol transport over the ocean revealed a minimal role of aerosol removal process representation in the model as opposed to model dynamics.
Atmospheric Chemistry and Physics | 2017
Ulas Im; Jørgen Brandt; Camilla Geels; Kaj M. Hansen; Jesper Christensen; Mikael Skou Andersen; Efisio Solazzo; I. Kioutsioukis; Ummugulsum Alyuz; Alessandra Balzarini; Rocío Baró; Roberto Bellasio; Roberto Bianconi; Johannes Bieser; Augustin Colette; Gabriele Curci; Aidan Farrow; Johannes Flemming; Andrea Fraser; Pedro Jiménez-Guerrero; Nutthida Kitwiroon; Ciao-Kai Liang; Guido Pirovano; Luca Pozzoli; Marje Prank; Rebecca Rose; Ranjeet S. Sokhi; Paolo Tuccella; Alper Unal; Marta G. Vivanco
The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.
Atmospheric Research | 2014
Gabriele Curci
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth ta(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low ‐ annual mean ta(3.5 km) 0.04 ‐ and shows a seasonal trend with a winter minimum ‐ ta(3.5 km) 0.03 ‐, and a summer maximum ‐ ta(3.5 km) 0.06 ‐, and an unexpected increase from August to September ‐ ta(3.5 km) 0.055). We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), while the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.
Atmospheric Chemistry and Physics | 2018
Marta G. Vivanco; Mark R. Theobald; Héctor García-Gómez; Juan Luis Garrido; Marje Prank; Wenche Aas; Mario Adani; Ummugulsum Aluyz; Camilla Andersson; Roberto Bellasio; Bertrand Bessagnet; Fabio Bianconi; Johannes Bieser; Jørgen Brandt; Gino Briganti; Andrea Cappelletti; Gabriele Curci; Jesper Christensen; Augustin Colette; Florian Couvidat; Cornelis Cuvelier; Massimo D'Isidoro; Johannes Flemming; Andrea Fraser; Camilla Geels; Kaj M. Hansen; Christian Hogrefe; Ulas Im; Oriol Jorba; Nutthida Kitwiroon
The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.
Archive | 2011
Gabriele Curci
The MM5-CHIMERE regional modelling system is implemented over Italy and validated against available ground-based observations of atmospheric composition in summer. MM5 meteorological model is run on two nested domain covering Europe and Italy at respectively 36 and 12 km horizontal resolution. CHIMERE chemistry transport model is used to simulate gas and aerosol composition on the two domains at 0.5° and 0.15° horizontal resolution. Anthropogenic hourly emissions of primary pollutants over Italy are derived from the CTN-ACE inventory developed by national environmental agencies. Biogenic volatile organic compound emissions are calculated with MEGAN model driven by MM5 radiation and temperature fields. Ozone (O3) daily maxima are simulated with good correlation (0.76) and overestimated by 10%. Model overestimation decreases with increasing observed O3, while correlation increases. PM10 is underestimated by 30–40% and reproduced with a correlation >0.5. Over Italy, the model capture enhanced level of O3, but not that of PM. Model skills in the 3-day ahead forecast do not degrade rapidly. Graphical output of forecast is operationally available on the ForeChem web site: http://pumpkin.aquila.infn.it/forechem/.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2016
Maria Fernanda Garcia Ferreyra; Gabriele Curci; Mario Lanfri
Air quality monitoring and research have been gaining importance in Argentina and Latin America, mainly in megacities where pollution reaches critical levels as in other places of the world. This work is a first attempt at simulating pollution levels at the country scale, in order to support air quality management and forecasting activities. We implemented the global scale inventory of anthropogenic emissions EDGAR v4.2 into the CHIMERE chemistry-transport model, driven by WRF meteorological fields, at a resolution of about 50 km, a performance evaluation of the modeling system is presented by the use of ground-based and satellite data. The lack of monitoring stations in the country constrained the evaluation to the March-May 2009 time period in three cities. We obtain a generally large underestimation of nitrogen oxides and particulate matter, but a good simulation of the daily cycles. The magnitude of pollution levels is underestimated probably because of the misrepresentation of the monitoring stations (sites heavily affected by local traffic) and of the coarse resolution of the model. Nitrogen dioxide tropospheric column obtained by the OMI sensor (onboard Aura/NASA) was used to evaluate spatial correspondence with the simulation outputs, revealing that spatial features are broadly captured by the model. Further work would imply an emission inventory refinement and the use of other satellite data available considering other periods of time; however, a more dense and representative air quality monitoring network throughout the country is very much needed.
Journal of Geophysical Research | 2018
Amir Hossein Souri; Yunsoo Choi; Shuai Pan; Gabriele Curci; Caroline R. Nowlan; Scott J. Janz; Matthew G. Kowalewski; Junjie Liu; Jay R. Herman; Andrew J. Weinheimer
A number of satellite‐based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high‐quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO_2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NO_x emissions in the Houston‐Galveston‐Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO_2 profiles from a high‐resolution regional model (1 × 1 km^2) constrained by P‐3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO_2 absorption line, and (iii) high‐resolution surface albedo constrained by ground‐based spectrometers. We characterize errors in the GCAS NO_2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 10^(15) molecules cm^(−2). On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2–50% reduction in polluted areas, partly counterbalancing the well‐documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top‐down emissions.
Collaboration
Dive into the Gabriele Curci's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputs