Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Lignani is active.

Publication


Featured researches published by Gabriele Lignani.


Stem cell reports | 2015

Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors

Massimiliano Caiazzo; Serena G. Giannelli; Pierluigi Valente; Gabriele Lignani; Annamaria Carissimo; Alessandro Sessa; Gaia Colasante; Rosa Bartolomeo; Luca Massimino; Stefano Ferroni; Carmine Settembre; Fabio Benfenati; Vania Broccoli

Summary Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications.


Cell Stem Cell | 2015

Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming

Gaia Colasante; Gabriele Lignani; Alicia Rubio; Lucian Medrihan; Latefa Yekhlef; Alessandro Sessa; Luca Massimino; Serena G. Giannelli; Silvio Sacchetti; Massimiliano Caiazzo; Damiana Leo; Dimitra Alexopoulou; Maria Teresa Dell’Anno; Ernesto Ciabatti; Marta Orlando; Michèle Studer; Andreas Dahl; Raul R. Gainetdinov; Stefano Taverna; Fabio Benfenati; Vania Broccoli

Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.


Optics Express | 2012

Strategies to maximize the performance of a STED microscope

Silvia Galiani; Benjamin Harke; Giuseppe Vicidomini; Gabriele Lignani; Fabio Benfenati; Alberto Diaspro; Paolo Bianchini

In stimulated emission depletion (STED) microscopy, the spatial resolution scales as the inverse square root of the STED beams intensity. However, to fully exploit the maximum effective resolution achievable for a given STED beams intensity, several experimental precautions have to be considered. We focus our attention on the temporal alignment between the excitation and STED pulses and the polarization state of the STED beam. We present a simple theoretical framework that help to explain their influence on the performance of a STED microscope and we validate the results by imaging calibration and biological samples with a custom made STED architecture based on a supercontinuum laser source. We also highlight the advantages of using time gating detection in terms of temporal alignment.


Nature Communications | 2013

Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels

Lucian Medrihan; Fabrizia Cesca; Andrea Raimondi; Gabriele Lignani; Pietro Baldelli; Fabio Benfenati

In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca2+-dependent manner by a functional interaction with presynaptic Ca2+ channels, revealing a new role in synaptic transmission for synapsins.


Neuropsychopharmacology | 2015

TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

Stefano Espinoza; Gabriele Lignani; Lucia Caffino; Silvia Maggi; Ilya Sukhanov; Damiana Leo; Liudmila Mus; Marco Emanuele; Giuseppe Ronzitti; Anja Harmeier; Lucian Medrihan; Tatyana D. Sotnikova; Evelina Chieregatti; Marius C. Hoener; Fabio Benfenati; Valter Tucci; Fabio Fumagalli; Raul R. Gainetdinov

Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.


The Journal of Neuroscience | 2014

Phosphorylation of Synapsin I by Cyclin-Dependent Kinase-5 Sets the Ratio between the Resting and Recycling Pools of Synaptic Vesicles at Hippocampal Synapses

Anne Mj Verstegen; Erica Tagliatti; Gabriele Lignani; Antonella Marte; Tamar Stolero; Merav Atias; Anna Corradi; Flavia Valtorta; Daniel Gitler; Franco Onofri; Anna Fassio; Fabio Benfenati

Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser549 (site 6) and Ser551 (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.


The EMBO Journal | 2013

REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability

Davide Pozzi; Gabriele Lignani; Enrico Ferrea; Andrea Contestabile; Francesco Paonessa; Rosalba D'Alessandro; Pellegrino Lippiello; Davide Boido; Anna Fassio; Jacopo Meldolesi; Flavia Valtorta; Fabio Benfenati; Pietro Baldelli

Intrinsic homeostasis enables neuronal circuits to maintain activity levels within an appropriate range by modulating neuronal voltage‐gated conductances, but the signalling pathways involved in this process are largely unknown. We characterized the process of intrinsic homeostasis induced by sustained electrical activity in cultured hippocampal neurons based on the activation of the Repressor Element‐1 Silencing Transcription Factor/Neuron‐Restrictive Silencer Factor (REST/NRSF). We showed that 4‐aminopyridine‐induced hyperactivity enhances the expression of REST/NRSF, which in turn, reduces the expression of voltage‐gated Na+ channels, thereby decreasing the neuronal Na+ current density. This mechanism plays an important role in the downregulation of the firing activity at the single‐cell level, re‐establishing a physiological spiking activity in the entire neuronal network. Conversely, interfering with REST/NRSF expression impaired this homeostatic response. Our results identify REST/NRSF as a critical factor linking neuronal activity to the activation of intrinsic homeostasis and restoring a physiological level of activity in the entire neuronal network.


Human Molecular Genetics | 2013

Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity

Gabriele Lignani; Andrea Raimondi; Enrico Ferrea; Anna Rocchi; Francesco Paonessa; Fabrizia Cesca; Marta Orlando; Tatiana Tkatch; Flavia Valtorta; Patrick Cossette; Pietro Baldelli; Fabio Benfenati

Synapsin I (SynI) is a synaptic vesicle (SV) phosphoprotein playing multiple roles in synaptic transmission and plasticity by differentially affecting crucial steps of SV trafficking in excitatory and inhibitory synapses. SynI knockout (KO) mice are epileptic, and nonsense and missense mutations in the human SYN1 gene have a causal role in idiopathic epilepsy and autism. To get insights into the mechanisms of epileptogenesis linked to SYN1 mutations, we analyzed the effects of the recently identified Q555X mutation on neurotransmitter release dynamics and short-term plasticity (STP) in excitatory and inhibitory synapses. We used patch-clamp electrophysiology coupled to electron microscopy and multi-electrode arrays to dissect synaptic transmission of primary SynI KO hippocampal neurons in which the human wild-type and mutant SynI were expressed by lentiviral transduction. A parallel decrease in the SV readily releasable pool in inhibitory synapses and in the release probability in excitatory synapses caused a marked reduction in the evoked synchronous release. This effect was accompanied by an increase in asynchronous release that was much more intense in excitatory synapses and associated with an increased total charge transfer. Q555X-hSynI induced larger facilitation and post-tetanic potentiation in excitatory synapses and stronger depression after long trains in inhibitory synapses. These changes were associated with higher network excitability and firing/bursting activity. Our data indicate that imbalances in STP and release dynamics of inhibitory and excitatory synapses trigger network hyperexcitability potentially leading to epilepsy/autism manifestations.


Seminars in Cell & Developmental Biology | 2011

Synapsins: from synapse to network hyperexcitability and epilepsy.

Anna Fassio; Andrea Raimondi; Gabriele Lignani; Fabio Benfenati; Pietro Baldelli

The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity. Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.


Frontiers in Molecular Neuroscience | 2013

Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

Gabriele Lignani; Enrico Ferrea; Francesco Difato; Jessica Amarù; Eleonora Ferroni; Eleonora Lugarà; Stefano Espinoza; Raul R. Gainetdinov; Pietro Baldelli; Fabio Benfenati

Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.

Collaboration


Dive into the Gabriele Lignani's collaboration.

Top Co-Authors

Avatar

Fabio Benfenati

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Pietro Baldelli

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Enrico Ferrea

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Andrea Raimondi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Anna Fassio

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Flavia Valtorta

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Lucian Medrihan

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Marta Orlando

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Diaspro

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge