Gabriele Moser
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriele Moser.
IEEE Transactions on Geoscience and Remote Sensing | 2013
Gabriele Moser; Sebastiano B. Serpico
In the framework of remote-sensing image classification, support vector machines (SVMs) have lately been receiving substantial attention due to their accurate results in many applications as well as their remarkable generalization capability even with high-dimensional input data. However, SVM classifiers are intrinsically noncontextual, which represents an important limitation in image classification. In this paper, a novel and rigorous framework, which integrates SVMs and Markov random field models in a unique formulation for spatial contextual classification, is proposed. The developed contextual generalization of SVMs, is obtained by analytically relating the Markovian minimum-energy criterion to the application of an SVM in a suitably transformed space. Furthermore, as a second contribution, a novel contextual classifier is developed in the proposed general framework. Two specific algorithms, based on the Ho–Kashyap and Powell numerical procedures, are combined with this classifier to automate the estimation of its parameters. Experiments are carried out with hyperspectral, multichannel synthetic aperture radar, and multispectral high-resolution images and the behavior of the method as a function of the training-set size is assessed.
IEEE Transactions on Geoscience and Remote Sensing | 2005
Paolo Mantero; Gabriele Moser; Sebastiano B. Serpico
A general problem of supervised remotely sensed image classification assumes prior knowledge to be available for all the thematic classes that are present in the considered dataset. However, the ground-truth map representing that prior knowledge usually does not really describe all the land-cover typologies in the image, and the generation of a complete training set often represents a time-consuming, difficult and expensive task. This problem affects the performances of supervised classifiers, which erroneously assign each sample drawn from an unknown class to one of the known classes. In the present paper, a classification strategy is described that allows the identification of samples drawn from unknown classes through the application of a suitable Bayesian decision rule. The proposed approach is based on support vector machines (SVMs) for the estimation of probability density functions and on a recursive procedure to generate prior probability estimates for known and unknown classes. In the experiments, both a synthetic dataset and two real datasets were used.
Proceedings of the IEEE | 2013
Gabriele Moser; Sebastiano B. Serpico; Jon Atli Benediktsson
Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.
IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003 | 2003
Paolo Mantero; Gabriele Moser; Sebastiano B. Serpico
A general problem of supervised remotely. sensed image classification assumes prior knowledge to be available for all thematic classes that are present in the considered data set. However, the ground truth map representing this prior knowledge usually does not really, describe all the land cover typologies in the image and the generation of a complete training set represents a time-consuming, difficult and expensive task. This problem may play a relevant role in remote sensing data analysis, since it affects the classification performances of supervised classifiers, which erroneously assign each sample drawn from an unknown class to one of the known classes. In the present paper, a classification strategy is proposed, which allows the identification of samples drawn from unknown classes, through the application of a suitable Bayesian decision rule. The proposed approach is based on support vector machines (SVMs) for the estimation of probability density, functions and on a recursive procedure to generate prior probabilities estimates for both known and unknown classes. For experimental purposes, both a synthetic data set and two real data sets are employed.
IEEE Transactions on Geoscience and Remote Sensing | 2009
Gabriele Moser; Sebastiano B. Serpico
In applications related to environmental monitoring and disaster management, multichannel synthetic aperture radar (SAR) data present a great potential, owing both to their insensitivity to atmospheric and Sun-illumination conditions and to the improved discrimination capability they may provide as compared with single-channel SAR. However, exploiting this potential requires accurate and automatic techniques to generate change maps from (multichannel) SAR images acquired over the same geographic region in different polarizations or at different frequencies at different times. In this paper, a contextual unsupervised change-detection technique (based on a data-fusion approach) is proposed for two-date multichannel SAR images. Each SAR channel is modeled as a distinct information source, and a Markovian approach to data fusion is adopted. A Markov random field model is introduced that combines together the information conveyed by each SAR channel and the spatial contextual information concerning the correlation among neighboring pixels and formulated by using ldquoenergy functions.rdquo In order to address the task of the estimation of the model parameters, the expectation-maximization algorithm is combined with the recently proposed ldquomethod of log-cumulants.rdquo The proposed technique was experimentally validated with semisimulated multipolarization and multifrequency data and with real SIR-C/XSAR images.
Proceedings of the IEEE | 2015
Luis Gómez-Chova; Devis Tuia; Gabriele Moser; Gustau Camps-Valls
Earth observation through remote sensing images allows the accurate characterization and identification of materials on the surface from space and airborne platforms. Multiple and heterogeneous image sources can be available for the same geographical region: multispectral, hyperspectral, radar, multitemporal, and multiangular images can today be acquired over a given scene. These sources can be combined/fused to improve classification of the materials on the surface. Even if this type of systems is generally accurate, the field is about to face new challenges: the upcoming constellations of satellite sensors will acquire large amounts of images of different spatial, spectral, angular, and temporal resolutions. In this scenario, multimodal image fusion stands out as the appropriate framework to address these problems. In this paper, we provide a taxonomical view of the field and review the current methodologies for multimodal classification of remote sensing images. We also highlight the most recent advances, which exploit synergies with machine learning and signal processing: sparse methods, kernel-based fusion, Markov modeling, and manifold alignment. Then, we illustrate the different approaches in seven challenging remote sensing applications: 1) multiresolution fusion for multispectral image classification; 2) image downscaling as a form of multitemporal image fusion and multidimensional interpolation among sensors of different spatial, spectral, and temporal resolutions; 3) multiangular image classification; 4) multisensor image fusion exploiting physically-based feature extractions; 5) multitemporal image classification of land covers in incomplete, inconsistent, and vague image sources; 6) spatiospectral multisensor fusion of optical and radar images for change detection; and 7) cross-sensor adaptation of classifiers. The adoption of these techniques in operational settings will help to monitor our planet from space in the very near future.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2015
Wenzhi Liao; Xin Huang; Frieke Van Coillie; Sidharta Gautama; Aleksandra Pizurica; Wilfried Philips; Hui Liu; Tingting Zhu; Michal Shimoni; Gabriele Moser; Devis Tuia
This paper reports the outcomes of the 2014 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS). As for previous years, the IADF TC organized a data fusion contest aiming at fostering new ideas and solutions for multisource remote sensing studies. In the 2014 edition, participants considered multiresolution and multisensor fusion between optical data acquired at 20-cm resolution and long-wave (thermal) infrared hyperspectral data at 1-m resolution. The Contest was proposed as a double-track competition: one aiming at accurate landcover classification and the other seeking innovation in the fusion of thermal hyperspectral and color data. In this paper, the results obtained by the winners of both tracks are presented and discussed.
IEEE Journal of Selected Topics in Signal Processing | 2011
Vladimir A. Krylov; Gabriele Moser; Sebastiano B. Serpico; Josiane Zerubia
In this paper, a novel supervised classification approach is proposed for high-resolution dual-polarization (dual-pol) amplitude satellite synthetic aperture radar (SAR) images. A novel probability density function (pdf) model of the dual-pol SAR data is developed that combines finite mixture modeling for marginal probability density functions estimation and copulas for multivariate distribution modeling. The finite mixture modeling is performed via a recently proposed SAR-specific dictionary-based stochastic expectation maximization approach to SAR amplitude pdf estimation. For modeling the joint distribution of dual-pol data the statistical concept of copulas is employed, and a novel dictionary-based copula-selection method method is proposed. In order to take into account the contextual information, the developed joint pdf model is combined with a Markov random field approach for Bayesian image classification. The accuracy of the developed dual-pol supervised classification approach is validated and compared with benchmark approaches on two high-resolution dual-pol TerraSAR-X scenes, acquired during an epidemiological study. A corresponding single-channel version of the classification algorithm is also developed and validated on a single polarization COSMO-SkyMed scene.
IEEE Geoscience and Remote Sensing Letters | 2007
Gabriele Moser; Sebastiano B. Serpico; Gianni Vernazza
Multichannel synthetic aperture radar (SAR) data present a good potential for environmental monitoring and disaster management, owing both to their insensitivity to atmospheric and sun-illumination conditions, and to the improved discrimination capability they may provide as compared to single-channel SAR. However, this requires accurate and possibly automatic techniques to generate change maps from multichannel SAR images acquired from the same geographic area at different times. In this letter, an automatic unsupervised contextual change-detection method is proposed for two-date multichannel SAR images, by integrating a SAR-specific extension of the Fisher transform with a variant of the expectation-maximization algorithm and with Markov random fields. The method is validated by experiments on SIR-C/XSAR data
IEEE Transactions on Image Processing | 2013
Vladimir A. Krylov; Gabriele Moser; Sebastiano B. Serpico; Josiane Zerubia
Parameter estimation of probability density functions is one of the major steps in the area of statistical image and signal processing. In this paper we explore several properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition for a strong consistency of the MoLC estimates which represents an important asymptotic property of any statistical estimator. This result enables the demonstration of the strong consistency of MoLC estimates for a selection of widely used distribution families originating from (but not restricted to) synthetic aperture radar image processing. We then derive the analytical conditions of applicability of MoLC to samples for the distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K families of distributions. Supervised image classification experiments are considered for medical ultrasound and remote-sensing SAR imagery. The obtained results suggest that MoLC is a feasible and computationally fast yet not universally applicable alternative to MoM. MoLC becomes especially useful when the direct ML approach turns out to be unfeasible.