Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Schmuck is active.

Publication


Featured researches published by Gabriele Schmuck.


Antimicrobial Agents and Chemotherapy | 2002

Neurotoxic Mode of Action of Artemisinin

Gabriele Schmuck; Elke Roehrdanz; Richard K. Haynes; Regine Kahl

ABSTRACT We recently described a screening system designed to detect neurotoxicity of artemisinin derivatives based on primary neuronal brain stem cell cultures (G. Schmuck and R. K. Haynes, Neurotoxicity Res. 2:37-49, 2000). Here, we probe possible mechanisms of this brain stem-specific neurodegeneration, in which artemisinin-sensitive neuronal brain stem cell cultures are compared with nonsensitive cultures (cortical neurons, astrocytes). Effects on the cytoskeleton of brain stem cell cultures, but not that of cortical cell cultures, were visible after 7 days. However, after a recovery period of 7 days, this effect also became visible in cortical cells and more severe in brain stem cell cultures. Neurodegeneration appears to be induced by effects on intracellular targets such as the cytoskeleton, modulation of the energy status by mitochondrial or metabolic defects, oxidative stress or excitotoxic events. Artemisinin reduces intracellular ATP levels and the potential of the inner mitochondrial membrane below the cytotoxic concentration range in all three cell cultures, with these effects being most dominant in the brain stem cultures. Surprisingly, there were substantial effects on cortical neurons after 7 days and on astrocytes after 1 day. Artemisinin additionally induces oxidative stress, as observed as an increase of reactive oxygen species and of lipid peroxidation in both neuronal cell types. Interestingly, an induction of expression of AOE was only seen in astrocytes. Here, manganese superoxide dismutase (MnSOD) expression was increased more than 3-fold and catalase expression was increased more than 1.5-fold. In brain stem neurons, MnSOD expression was dose dependently decreased. Copper-zinc superoxide dismutase and glutathione peroxidase, two other antioxidant enzymes that were investigated, did not show any changes in their mRNA expression in all three cell types after exposure to artemisinin.


Mutation Research | 2008

Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone

Daniel J. Smart; H. Dorota Halicka; Gabriele Schmuck; Frank Traganos; Zbigniew Darzynkiewicz; Gary M. Williams

Double-strand breaks (DSBs) are highly deleterious DNA lesions as they lead to chromosome aberrations and/or apoptosis. The formation of nuclear DSBs triggers phosphorylation of histone H2AX on Ser-139 (defined as gammaH2AX), which participates in the repair of such DNA damage. Our aim was to compare the induction of gammaH2AX in relation to DSBs induced by topoisomerase II (TOPO II) poisons, etoposide (ETOP) and mitoxantrone (MXT), in V79 cells. DSBs were measured by the neutral comet assay, while gammaH2AX was quantified using immunocytochemistry and flow cytometry. Stabilized cleavage complexes (SCCs), lesions thought to be responsible for TOPO II poison-induced genotoxicity, were measured using a complex of enzyme-DNA assay. In the case of ETOP, a no observed adverse effect level (NOAEL) and lowest observed effect level (LOEL) for genotoxicity was determined; gammaH2AX levels paralleled DSBs at all concentrations but significant DNA damage was not detected below 0.5 microg/ml. Furthermore, DNA damage was dependent on the formation of SCCs. In contrast, at low MXT concentrations (0.0001-0.001 microg/ml), induction of gammaH2AX was not accompanied by increases in DSBs. Rather, DSBs were only significantly increased when SCCs were detected. These findings suggest MXT-induced genotoxicity occurred via at least two mechanisms, possibly related to DNA intercalation and/or redox cycling as well as TOPO II inhibition. Our findings also indicate that gammaH2AX can be induced by DNA lesions other than DSBs. In conclusion, gammaH2AX, when measured using immunocytochemical and flow cytometric methods, is a sensitive indicator of DNA damage and may be a useful tool in genetic toxicology screens. ETOP data are consistent with the threshold concept for TOPO II poison-induced genotoxicity and this should be considered in the safety assessment of chemicals displaying an affinity for TOPO II and genotoxic/clastogenic effects.


Neurotoxicity Research | 2002

Oxidative Stress in Rat Cortical Neurons and Astrocytes Induced by Paraquat In Vitro

Gabriele Schmuck; Elke Röhrdanz; Quynh-Hoa Tran-Thi; Regine Kahl; G. Schlüter

Oxidative stress has been discussed as crucial mechanism of neuronal cell death in the adult brain. However, it was not clear until now whether neurons are more sensitive to oxidative stress than the other cells in the brain, e.g. astrocytes. Therefore both cell types were exposed to oxidative stress provoked by the redoxcycling compound paraquat. Cortical neurons were found to be more sensitive towards paraquat toxicity than astrocytes as shown by MTT and Neutral Red assay, two different cytotoxicity assays. Mitochondrial functions were determined by the mitochondrial membrane potential and intracellular ATP concentrations. Again cortical neurons were more severely impaired (by paraquat than astrocytes). The production of reactive oxygen species after paraquat exposure was much higher in cortical neurons than in astrocytes and correlated with a higher depletion of GSH (intracellular glutathion). Lipid peroxidation could be shown in astrocytes via the breakdown product malondialdehyde (MDA) whereas in cortical neurons 4-hydroxynonenal (4-HNE) was detected as this endpoint.If and how oxidative stress influences the antioxidant defense was determined via changes in the expression of antioxidant enzymes. Paraquat exposure lead to a 2–3 fold increase of catalase, MnSOD and CuZnSOD mRNA expression in astrocytes. In contrast to astrocytes in cortical neurons catalase and MnSOD mRNA levels were only marginally elevated about 1.5-fold by treatment with paraquat. Expression levels of glutathione peroxidase (GPx) mRNA were the only one that were not changed in both cell types after paraquat exposure. It is concluded that the more marked increase in expression levels of antioxidant enzymes may render astrocytes more resistant to oxidative stress than neuronal cells.


Brain Research | 2001

The influence of oxidative stress on catalase and MnSOD gene transcription in astrocytes

Elke Röhrdanz; Gabriele Schmuck; Sandra Ohler; Regine Kahl

The brain is particularly vulnerable to oxygen free radicals, which have been implicated in the pathology of several neurological disorders. The antioxidant enzyme (AOE) system of the brain may play an important role in the protection against such oxidative stress. We investigated the influence of oxidative stress on the transcription of catalase and MnSOD mRNA. Primary rat astroglial cell cultures were treated either with hydrogen peroxide (H2O2), as a direct mediator of oxidative stress, or with the redox cycling compound paraquat. Both substances led to an increase of catalase and MnSOD mRNA levels. To further elucidate the mechanisms residing behind this increase, transfection experiments were performed. Transient transfection of primary astroglial cells with a reporter plasmid containing the upstream region of the catalase gene showed a decrease in reporter gene activity after exposure of transfected cells to either H2O2 or paraquat. In contrast, transfection experiments done with reporter plasmids for the MnSOD upstream region resulted in an increase of reporter gene activity after H2O2 as well as after paraquat treatment of transfected cells. These results indicate transcriptional regulation of MnSOD and post-transcriptional regulation of catalase gene expression after oxidative stress in primary rat astrocytes.


Archives of Toxicology | 2015

International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes

Anna Bal-Price; Kevin M. Crofton; Marcel Leist; Sandra Allen; Michael Arand; Timo Buetler; Nathalie Delrue; Rex E. FitzGerald; Thomas Hartung; Tuula Heinonen; Helena T. Hogberg; Susanne Hougaard Bennekou; Walter Lichtensteiger; Daniela Maria Oggier; Martin Paparella; Marta Axelstad; Aldert H. Piersma; Eva Rached; Benoît Schilter; Gabriele Schmuck; Luc Stoppini; Enrico Tongiorgi; Manuela Tiramani; Florianne Monnet-Tschudi; Martin F. Wilks; Timo Ylikomi; Ellen Fritsche

Abstract A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23–24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.


Archives of Toxicology | 2004

Effects of the carbamates fenoxycarb, propamocarb and propoxur on energy supply, glucose utilization and SH-groups in neurons

Gabriele Schmuck; Florin Mihail

Carbamates belonged to an older insecticide group, with propoxur being representative of this group. However, today carbamates with hormonal effects on insects, like fenoxycarb, or with fungicide properties, like propamocarb, are also used. The goal was a comparison of three structurally and functional different carbamates with a possibly common toxicological mechanism. Primary neuronal cell cultures of the rat are a well established model to identify neurotoxic compounds like n-hexane or acrylamide. In this cell culture model endpoints such as viability, energy supply, glucose consumption, glutathione (GSH) levels and cytoskeleton elements were determined. Added to cultured rat cortical neurons for 1 week, fenoxycarb, propamocarb and propoxur considerably decreased ATP levels, mitochondrial membrane potential and glucose consumption. Besides this, fenoxycarb and propamocarb had an impact on neurofilaments. After recovery for 1 week, propoxur also showed effects on neurofilaments, whereas with the other carbamates no tendency for a recovery was seen. These effects were prevented completely by pyruvate for propoxur and propamocarb, and partly so for fenoxycarb. In contrast to the main experimental design, GSH was determined after 1-h treatment with the test substances. Surprisingly, the compounds had only slight or no effect on the GSH level within this time. Further mechanistic studies indicated that carbamates primarily interacted with SH-groups, most likely by interfering with glycolysis and the construction of fibrillary proteins like neurofilaments. The prevention by pyruvate and acetylcysteine pointed to these biochemical endpoints.


Neurotoxicity Research | 2000

Establishment of anIn Vitro screening model for neurodegeneration induced by antimalarial drugs of the artemisinin-type

Gabriele Schmuck; Richard K. Haynes

The establishment of anin vitro screening model for neurodegeneration inducing antimalarial drugs was conducted in stepwise fashion. Firstly, thein vivo selective neurotoxic potency of artemisinin was tested in neuronal cellsin vitro in relation to the cytotoxic potency in other organ cell cultures such as liver and kidney or versus glial cells. Secondly, a comparison between different parts of the brain (cortex vs. brain stem) was performed and in the last step, a fast and sensitive screening endpoint was identified. In summary, non-neuronal cell lines such as hepatocytes (HEP-G2), liver epithelial cells (IAR), proximal tubular cells (LLC-PK1) and glial cells from the rat (C 6) and human (GO-G-IJKT) displayed only moderate sensitivity to artemisinin and its derivatives. The same was found in undifferentiated neuronal cell lines from the mouse (N-18) and from human (Kelly), whereas during differentiation, these cells became much more sensitive. Primary astrocytes from the rat also were not specifically involved. In the comparison of primary neuronal cell cultures from the cortex and brain stem of the rat, the brain stem was found to be more sensitive than the cortex. The neurotoxic potential was determined by cytoskeleton elements (neurofilaments), which were degradatedin vitro by diverse neurodegenerative compounds. In comparison of dog and rat primary brain stem cultures, the dog cells were found to be more sensitive to artemisinin than the rat cells. In addition to the primary brain stem cell cultures it was shown that the sprouting assay, which determines persistent delayed neurotoxic effects, is also useful for screening antimalarial drugs. To other compounds, artemether and artesunate, showed the use of the sprouting assay followed by primary brain stem cultures of the rat will be a good strategy to select candidate compounds.


Archives of Toxicology | 2002

Effects of the dithiocarbamate fungicide propineb in primary neuronal cell cultures and skeletal muscle cells of the rat.

Gabriele Schmuck; Hans-Jürgen Ahr; Florin Mihail; Bernhard Stahl; Martin Kayser

Abstract. After repeated-dose toxicity studies with the fungicide propineb, reversible effects on muscle functions were found. Therefore, mechanistic investigations should contribute to clarification of its mode of action in relation to disulfiram and diethyldithiocarbamate neurotoxicity or direct effects on muscle cells. In principle, besides the dithiocarbamate effects, two different mechanisms have been discussed for this fungicide. One mechanism is the degradation to carbon disulfide (CS2) and propylenthiourea (PTU) and the other are direct effects of zinc. Primary neuronal cell cultures of the rat are a well established model to identify neurotoxic compounds like n-hexane or acrylamide. In this cell culture model, endpoints such as viability, energy supply, glucose consumption and cytoskeleton elements were determined. Additionally, skeletal muscle cells were used for comparison. Propineb and its metabolite PTU were investigated in comparison to CS2, disulfiram and diethyldithiocarbamate. The toxicity of zinc was tested using zinc chloride (ZnCl2). It was clearly shown that propineb exerted strong effects on the cytoskeleton of neuronal and non-neuronal cell cultures (astrocytes, muscle cells). This was similar to ZnCl2, but not to CS2. With CS2 and disulfiram effects on the energy supply were more prominent. In conclusion, the toxicity of propineb is not comparable to disulfiram, diethyldithiocarbamate or CS2 neurotoxicity. In regard to these findings, a direct reversible effect of propineb on skeletal muscle cells seems to be more likely.


Toxicology and Applied Pharmacology | 2018

Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes

Ellen Fritsche; Philippe Grandjean; Kevin M. Crofton; Michael Aschner; Alan M. Goldberg; Tuula Heinonen; Ellen V.S. Hessel; Helena T. Hogberg; Susanne Hougaard Bennekou; Pamela J. Lein; Marcel Leist; William R. Mundy; Martin Paparella; Aldert H. Piersma; Magdalini Sachana; Gabriele Schmuck; Roland Solecki; Andrea Terron; Florianne Monnet-Tschudi; Martin F. Wilks; Hilda Witters; Marie-Gabrielle Zurich; Anna Bal-Price

This consensus statement voices the agreement of scientific stakeholders from regulatory agencies, academia and industry that a new framework needs adopting for assessment of chemicals with the potential to disrupt brain development. An increased prevalence of neurodevelopmental disorders in children has been observed that cannot solely be explained by genetics and recently pre- and postnatal exposure to environmental chemicals has been suspected as a causal factor. There is only very limited information on neurodevelopmental toxicity, leaving thousands of chemicals, that are present in the environment, with high uncertainty concerning their developmental neurotoxicity (DNT) potential. Closing this data gap with the current test guideline approach is not feasible, because the in vivo bioassays are far too resource-intensive concerning time, money and number of animals. A variety of in vitro methods are now available, that have the potential to close this data gap by permitting mode-of-action-based DNT testing employing human stem cells-derived neuronal/glial models. In vitro DNT data together with in silico approaches will in the future allow development of predictive models for DNT effects. The ultimate application goals of these new approach methods for DNT testing are their usage for different regulatory purposes.


Neurotoxicology | 2003

Effects of the New Herbicide Fentrazamide on the Glucose Utilization in Neurons and Erythrocytes In Vitro

Gabriele Schmuck; Alexius Freyberger; Hans-Jürgen Ahr; Bernhard Stahl; Martin Kayser

Treatment of rats with fentrazamide for 2 years at 3000 ppm (males) and 4000 ppm (females) led to an increased incidence and degree of axonal degeneration in sciatic nerve as well as to effects on red blood cells. The mechanism underlying these effects was investigated in vitro using various cell cultures (permanent rodent cell lines from the nervous system, liver, kidney, skeletal and heart muscle and fibroblasts, primary cortical neurons and erythrocytes from the rat). Added to cultured rat cortical neurons for 1 week, fentrazamide considerably decreased glucose consumption, ATP levels and mitochondrial membrane potential and lowered the GSH level, however, it had little impact on viability and neurofilaments and did not induce oxidative stress (ROS) over the first 2 h. After recovery for 1 week, in addition some destruction of neurofilaments had occurred probably secondary to the disturbance of energy production. These effects were prevented by pyruvate. Further studies indicated that fentrazamide primarily inhibited glucose utilization, most likely by interfering with glycolysis. Similar effects were found in erythrocytes treated with fentrazamide over a period of 7 days. Primarily, the glucose consumption was reduced after 1-day treatment, followed by a marked reduction of the energy supply at days 3 and 7. Comparable to the neurons, the GSH level was significantly reduced. A marked hemolysis of the red blood cells was then observed after prolonged treatment. The extensive energy demand and exclusive dependency on glucose utilization of neurons and erythrocytes may explain the specific vulnerability of motor neurons and erythrocytes. When comparing the concentrations necessary for inducing effects in vitro on neuronal cells and erythrocytes to the very low plasma concentrations of fentrazamide in treated rats it is suggested that only a small impact of fentrazamide on the energy status at high doses will occur in vivo. Therefore, aging of the rat as another factor compromising mitochondrial energy production in motor neurons must be considered as additional contribution for the induction of axonal degeneration. It is concluded that this effect of fentrazamide in rats poses no specific risk under the exposure conditions relevant to humans.

Collaboration


Dive into the Gabriele Schmuck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Man-Ki Cheung

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wai-Lun Lam

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Regine Kahl

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Hing-Wo Tsang

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis E. Kyle

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge