Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Togliatto is active.

Publication


Featured researches published by Gabriele Togliatto.


Diabetes | 2010

UNACYLATED GHRELIN RESCUES ENDOTHELIAL PROGENITOR CELL FUNCTION IN INDIVIDUALS WITH TYPE 2 DIABETES

Gabriele Togliatto; Antonella Trombetta; Patrizia Dentelli; Alessandra Baragli; Arturo Rosso; Riccarda Granata; Dario Ghigo; Luigi Pegoraro; Ezio Ghigo; Maria Felice Brizzi

OBJECTIVE Acylated ghrelin (AG) is a diabetogenic and orexigenic gastric polypeptide. These properties are not shared by the most abundant circulating form, which is unacylated (UAG). An altered UAG/AG profile together with an impairment of circulating endothelial progenitor cell (EPC) bioavailability were found in diabetes. Based on previous evidence for the beneficial cardiovascular effects of AG and UAG, we investigated their potential to revert diabetes-associated defects. RESEARCH DESIGN AND METHODS Healthy human subjects, individuals with type 2 diabetes, and ob/ob mice were AG or UAG infused. EPC mobilization in patients and mice was evaluated, and the underlying molecular mechanisms were investigated in bone marrow stromal cells. Recovered EPCs were also evaluated for the activity of senescence regulatory pathways and for NADPH oxidase activation by knocking down p47phox and Rac1. Finally, UAG modulation of human EPC vasculogenic potential was investigated in an in vivo mouse model. RESULTS Neither AG nor UAG had any effect in healthy subjects. However, systemic administration of UAG, but not AG, prevented diabetes-induced EPC damage by modulating the NADPH oxidase regulatory protein Rac1 and improved the vasculogenic potential both in individuals with type 2 diabetes and in ob/ob mice. In addition, unlike AG, UAG facilitated the recovery of bone marrow EPC mobilization. Crucial to EPC mobilization by UAG was the rescue of endothelial NO synthase (eNOS) phosphorylation by Akt, as UAG treatment was ineffective in eNOS knockout mice. Consistently, EPCs expressed specific UAG-binding sites, not recognized by AG. CONCLUSIONS These data provide the rationale for clinical applications of UAG in pathologic settings where AG fails.


The FASEB Journal | 2012

Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation

Riccarda Granata; Davide Gallo; Raúl M. Luque; Alessandra Baragli; Francesca Scarlatti; Cristina Grande; Iacopo Gesmundo; Jose Cordoba-Chacon; Loredana Bergandi; Fabio Settanni; Gabriele Togliatto; Marco Volante; Stefano Garetto; Marta Annunziata; Belén Chanclón; Eleonora Gargantini; Stefano Rocchietto; Lina Matera; Giacomo Datta; Mario Morino; Maria Felice Brizzi; Huy Ong; Giovanni Camussi; Justo P. Castaño; Mauro Papotti; Ezio Ghigo

The metabolic actions of the ghrelin gene‐derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high‐fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3‐L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3‐L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3‐L1 preadipocytes by increasing phosphoinositide 3‐kinase (PI3K)/Akt and extracellular signal‐regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol‐induced lipolysis, promoted AMP‐activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin‐induced glucose uptake. In HFD‐fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.—Granata, R., Gallo, D., Luque, R. M., Baragli, A., Scarlatti, F., Grande, C., Gesmundo, I., Córdoba‐Chacón, J., Bergandi, L., Settanni, F., Togliatto, G., Volante, M., Garetto, S., Annunziata, M., Chanclón, B., Gargantini, E., Rocchietto, S., Matera, L., Datta, G., Morino, M., Brizzi, M. F., Ong, H., Camussi, G., Castaño, J. P., Papotti, M., Ghigo, E. Obestatin regulates adipocyte function and protects against diet‐induced insulin resistance and inflammation. FASEB J. 26, 3393–3411 (2012). www.fasebj.org


Diabetologia | 2011

MIR221/MIR222-driven post-transcriptional regulation of P27KIP1 and P57KIP2 is crucial for high-glucose- and AGE-mediated vascular cell damage

Gabriele Togliatto; Antonella Trombetta; Patrizia Dentelli; Arturo Rosso; Maria Felice Brizzi

Aims/hypothesisMicroRNAs (miRNAs) are a novel group of small non-coding RNAs that regulate gene expression at the post-transcriptional level and act on their target mRNAs in a tissue- and cell-type-specific manner. Herein, the relevance of MIR221/MIR222 in high-glucose- and AGE-mediated vascular damage was investigated.MethodsFunctional studies were performed using human mature endothelial cells and endothelial progenitor cells subjected to high glucose or AGE. Quantitative real-time amplification was performed to analyse MIR221/MIR222 expression in these experimental conditions. Luciferase assay was used to identify MIR221/MIR222 targets. Functional studies were performed in vitro and in vivo in mice using gain- and loss-of-function approaches.ResultsUsing an in vivo mouse model we demonstrated that exposure to AGE and high glucose impaired vessel formation. Moreover, in vitro functional studies revealed that both high glucose and AGE inhibit cell-cycle progression by modulating the expression of P27KIP1 (also known as CDKN1B) and P57KIP2 (also known as CDKN1C), which encode cyclin-dependent kinase inhibitor 1B (p27, Kip1) (P27KIP1) and cyclin-dependent kinase inhibitor 1C (p57, Kip2) (P57KIP2), respectively. Crucial to AGE- and high-glucose-mediated cell-cycle arrest was the downregulation of MIR221/MIR222 expression. Luciferase assay showed that MIR221 and MIR222 specifically bind to the P27KIP1 and P57KIP2 mRNA 3′-untranslated regions, implicating P27KIP1 and P57KIP2 as MIR221/MIR222 targets. These results were confirmed by gain-of-function experiments in vitro, and by injecting mice with endothelial cells overexpressing MIR221 and MIR222.Conclusions/interpretationWe provide evidence that high-glucose- and AGE-induced inhibition of vascular cell proliferation is controlled by MIR221/MIR222-driven post-transcriptional regulation of P27KIP1 and P57KIP2. These data add further insight to the possible contribution of miRNAs in vascular damage mediated by a high-glucose environment.


Journal of the American Heart Association | 2013

Unacylated Ghrelin Promotes Skeletal Muscle Regeneration Following Hindlimb Ischemia via SOD-2–Mediated miR-221/222 Expression

Gabriele Togliatto; Antonella Trombetta; Patrizia Dentelli; Paolo Cotogni; Arturo Rosso; Matthias H. Tschöp; Riccarda Granata; Ezio Ghigo; Maria Felice Brizzi

Background Surgical treatment of peripheral artery disease, even if successful, does not prevent reoccurrence. Under these conditions, increased oxidative stress is a crucial determinant of tissue damage. Given its reported antioxidant effects, we investigated the potential of unacylated‐ghrelin (UnAG) to reduce ischemia‐induced tissue damage in a mouse model of peripheral artery disease. Methods and Results We show that UnAG but not acylated ghrelin (AG) induces skeletal muscle regeneration in response to ischemia via canonical p38/mitogen‐actived protein kinase signaling UnAG protected against reactive oxygen species–induced cell injuries by inducing the expression of superoxide dismutase‐2 (SOD‐2) in satellite cells. This led to a reduced number of infiltrating CD68+ cells and was followed by induction of the myogenic process and a reduction in functional impairment. Moreover, we found that miR‐221/222, previously linked to muscle regeneration processes, was up‐regulated and negatively correlated with p57Kip2 expression in UnAG‐treated mice. UnAG, unlike AG, promoted cell‐cycle entry in satellite cells of mice lacking the genes for ghrelin and its receptor (GHSR1a). UnAG‐induced p38/mitogen‐actived protein kinase phosphorylation, leading to activation of the myogenic process, was prevented in SOD‐2–depleted SCs. By siRNA technology, we also demonstrated that SOD‐2 is the antioxidant enzyme involved in the control of miR‐221/222–driven posttranscriptional p57Kip2 regulation. Loss‐of‐function experiments targeting miR‐221/222 and local pre–miR‐221/222 injection in vivo confirmed a role for miR‐221/222 in driving skeletal muscle regeneration after ischemia. Conclusions These results indicate that UnAG‐induced skeletal muscle regeneration after ischemia depends on SOD‐2–induced miR‐221/222 expression and highlight its clinical potential for the treatment of reactive oxygen species–mediated skeletal muscle damage.


Diabetes | 2015

Unacylated Ghrelin Induces Oxidative Stress Resistance in a Glucose Intolerance and Peripheral Artery Disease Mouse Model by Restoring Endothelial Cell miR-126 Expression

Gabriele Togliatto; Antonella Trombetta; Patrizia Dentelli; Sara Gallo; Arturo Rosso; Paolo Cotogni; Riccarda Granata; Rita Falcioni; Thomas Delale; Ezio Ghigo; Maria Felice Brizzi

Reactive oxygen species (ROS) are crucial in long-term diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia–subjected ob/ob mice. This effect translates into reductions in hind limb functional impairment. We show that UnAG rescues sirtuin 1 (SIRT1) activity and superoxide dismutase-2 (SOD-2) expression in ECs. This leads to SIRT1-mediated p53 and histone 3 lysate 56 deacetylation and results in reduced EC senescence in vivo. We demonstrate, using small interfering RNA technology, that SIRT1 is also crucial for SOD-2 expression. UnAG also renews micro-RNA (miR)-126 expression, resulting in the posttranscriptional regulation of vascular cell adhesion molecule 1 expression and a reduced number of infiltrating inflammatory cells in vivo. Loss-of-function experiments that target miR-126 demonstrate that miR-126 also controls SIRT1 and SOD-2 expression, thus confirming its role in driving UnAG-mediated EC protection against ROS imbalance. These results indicate that UnAG protects vessels from ROS imbalance in ob/ob mice by rescuing miR-126 expression, thus emphasizing its potential clinical impact in avoiding limb loss in PAD.


Blood | 2008

Interleukin-3 promotes expansion of hemopoietic-derived CD45+ angiogenic cells and their arterial commitment via STAT5 activation.

Annarita Zeoli; Patrizia Dentelli; Arturo Rosso; Gabriele Togliatto; Antonella Trombetta; Laura Damiano; Paola Francia di Celle; Luigi Pegoraro; Fiorella Altruda; Maria Felice Brizzi

Interleukin-3 (IL-3) released by infiltrating inflammatory cells in different pathologic settings contributes to organ and tumor angiogenesis. Here we demonstrate that IL-3 expands a subset of CD45+ circulating angiogenic cells clonally derived from the hemopoietic progenitors. Moreover, CD45+ cells exposed to IL-3 acquire arterial specification and contribute to the formation of vessels in vivo. Depletion of signal transducer and activator of transcription 5 (STAT5) provides evidence that IL-3-mediated cell expansion and arterial morphogenesis rely on STAT5 activation. In addition, by means of Tie2-transgenic mice, we demonstrate that STAT5 also regulates IL-3-induced expansion and arterial specification of bone marrow-derived CD45+ cells. Thus, our data provide the first evidence that, in inflammatory microenvironments containing IL-3, angiogenic cells derived from hemopoietic precursors can act as adult vasculogenic cells. Moreover, the characterization of the signaling pathway regulating these events provides the rationale for therapeutically targeting STAT5 in these pathologic settings.


Journal of Medicinal Chemistry | 2012

Des-acyl ghrelin fragments and analogues promote survival of pancreatic β-cells and human pancreatic islets and prevent diabetes in streptozotocin-treated rats.

Riccarda Granata; Fabio Settanni; Michel Julien; Rita Nano; Gabriele Togliatto; Antonella Trombetta; Davide Gallo; Lorenzo Piemonti; Maria Felice Brizzi; Thierry Abribat; Aart Jan van der Lely; Ezio Ghigo

Des-acyl ghrelin, although devoid of binding to ghrelin receptor (GRLN), exerts many biological effects, including regulation of glucose and lipid metabolism. Indeed, des-acyl ghrelin promotes pancreatic β-cell and human islet cell survival and prevents diabetes in streptozotocin (STZ) treated rats. We investigated whether des-acyl ghrelin fragments excluding serine(3), which is essential for binding to GRLN, would display similar actions. Among the different compounds tested, des-acyl ghrelin((6-13)) and des-acyl ghrelin((6-13)) with alanine substitutions or cyclization, but not with d-amino acid substitutions, showed the best survival effect, similar to des-acyl ghrelin. Des-acyl ghrelin((6-13)) even prevented diabetes in STZ-treated rats and protected human circulating angiogenic cells from oxidative stress and senescence, similar to des-acyl ghrelin. These results suggest that not only full-length des-acyl ghrelin but also short des-acyl ghrelin fragments have clear beneficial effects on several tissues in vitro and in vivo.


International Journal of Obesity | 2016

Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications

Gabriele Togliatto; Patrizia Dentelli; S Gallo; C Deregibus; E Biglieri; A Iavello; E Santini; C Rossi; Anna Solini; Giovanni Camussi; Maria Felice Brizzi

Background/Objectives:Soluble factors and cell-derived extracellular vesicles (EVs) are crucial tissue repair mediators in cell-based therapy. In the present study, we investigate the therapeutic impact of EVs released by adipose tissue-derived stem cells (ASCs) recovered from obese subjects’ visceral and subcutaneous tissues.Methods:ASCs were recovered from 10 obese (oASCs) and 6 non-obese (nASCs) participants and characterized. In selected experiments, nASCs and oASCs were cultured with palmitic acid (PA) or high glucose (HG), respectively. EVs from obese (oEVs) and non-obese (nEVs) subjects’ visceral and subcutaneous ASCs were collected after ultracentrifugation and analyzed for their cargo: microRNA-126 (miR-126), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 2 (MMP-2), and for their biological effects on endothelial cells (ECs). Western blotting analysis and loss- and gain-of function experiments were performed.Results:oEVs show impaired angiogenic potential compared with nEVs. This effect depends on EV cargo: reduced content of VEGF, MMP-2 and, more importantly, miR-126. We demonstrate, using gain- and loss-of-function experiments, that this reduced miR-126 content leads to Spred1 upregulation and the inhibition of the extracellular signal–regulated kinase 1/2 mitogen-activated protein kinase pathway in ECs. We also show that PA treatment of nASCs translates into the release of EVs that recapitulate oEV cargo. Moreover, HG treatment of oASCs further reduces miR-126 EV content and EV-mediated in vitro angiogenesis. Finally, impaired pro-angiogenic potential is also detected in EVs released from obese subcutaneous adipose tissue-derived ASCs.Conclusions:These results indicate that obesity impacts on EV pro-angiogenic potential and may raise concerns about the use of adipose tissue-derived EVs in cell-based therapy in the obese setting.


Diabetes | 2013

Increase of Palmitic Acid Concentration Impairs Endothelial Progenitor Cell and Bone Marrow–Derived Progenitor Cell Bioavailability: Role of the STAT5/PPARγ Transcriptional Complex

Antonella Trombetta; Gabriele Togliatto; Arturo Rosso; Patrizia Dentelli; Cristina Olgasi; Paolo Cotogni; Maria Felice Brizzi

Metabolic profiling of plasma nonesterified fatty acids discovered that palmitic acid (PA), a natural peroxisome proliferator–activated receptor γ (PPARγ) ligand, is a reliable type 2 diabetes biomarker. We investigated whether and how PA diabetic (d-PA) concentrations affected endothelial progenitor cell (EPC) and bone marrow–derived hematopoietic cell (BM-HC) biology. PA physiologic (n-PA) and d-PA concentrations were used. Proliferating cell nuclear antigen content and signal transducer and activator of transcription 5 (STAT5), PPARγ, cyclin D1, and p21Waf expression were evaluated. Small interfering RNA technology, gene reporter luciferase assay, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, and coimmunoprecipitation were exploited. In vivo studies and migration assays were also performed. d-PA, unlike n-PA or physiological and diabetic oleic and stearic acid concentrations, impaired EPC migration and EPC/BM-HC proliferation through a PPARγ-mediated STAT5 transcription inhibition. This event did not prevent the formation of a STAT5/PPARγ transcriptional complex but was crucial for gene targeting, as p21Waf gene promoter, unlike cyclin D1, was the STAT5/PPARγ transcriptional target. Similar molecular events could be detected in EPCs isolated from type 2 diabetic patients. By expressing a constitutively activated STAT5 form, we demonstrated that STAT5 content is crucial for gene targeting and EPC fate. Finally, we also provide in vivo data that d-PA–mediated EPC dysfunction could be rescued by PPARγ blockade. These data provide first insights on how mechanistically d-PA drives EPC/BM-HC dysfunction in diabetes.


Diabetes | 2012

Increase of Palmitic Acid Concentration Impairs Endothelial Progenitor Cell and Bone Marrow–Derived Progenitor Cell Bioavailability: Role of the Signal Transducer and Activator of Transcription 5/Peroxisome Proliferator–Activated Receptor γ Transcriptional Complex

Antonella Trombetta; Gabriele Togliatto; Arturo Rosso; Patrizia Dentelli; Cristina Olgasi; Paolo Cotogni; Maria Felice Brizzi

Metabolic profiling of plasma nonesterified fatty acids discovered that palmitic acid (PA), a natural peroxisome proliferator–activated receptor γ (PPARγ) ligand, is a reliable type 2 diabetes biomarker. We investigated whether and how PA diabetic (d-PA) concentrations affected endothelial progenitor cell (EPC) and bone marrow–derived hematopoietic cell (BM-HC) biology. PA physiologic (n-PA) and d-PA concentrations were used. Proliferating cell nuclear antigen content and signal transducer and activator of transcription 5 (STAT5), PPARγ, cyclin D1, and p21Waf expression were evaluated. Small interfering RNA technology, gene reporter luciferase assay, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, and coimmunoprecipitation were exploited. In vivo studies and migration assays were also performed. d-PA, unlike n-PA or physiological and diabetic oleic and stearic acid concentrations, impaired EPC migration and EPC/BM-HC proliferation through a PPARγ-mediated STAT5 transcription inhibition. This event did not prevent the formation of a STAT5/PPARγ transcriptional complex but was crucial for gene targeting, as p21Waf gene promoter, unlike cyclin D1, was the STAT5/PPARγ transcriptional target. Similar molecular events could be detected in EPCs isolated from type 2 diabetic patients. By expressing a constitutively activated STAT5 form, we demonstrated that STAT5 content is crucial for gene targeting and EPC fate. Finally, we also provide in vivo data that d-PA–mediated EPC dysfunction could be rescued by PPARγ blockade. These data provide first insights on how mechanistically d-PA drives EPC/BM-HC dysfunction in diabetes.

Collaboration


Dive into the Gabriele Togliatto's collaboration.

Top Co-Authors

Avatar

Maria Felice Brizzi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Patrizia Dentelli

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arturo Rosso

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge