Gabriele Turacchio
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriele Turacchio.
Nature | 1999
Roberto Weigert; Maria Giuseppina Silletta; Stefania Spanò; Gabriele Turacchio; Claudia Cericola; Antonino Colanzi; Silvia Senatore; Raffaella Mancini; Elena V. Polishchuk; Mario Salmona; Francesco Facchiano; Koert N.J. Burger; Alexander A. Mironov; Alberto Luini; Daniela Corda
Membrane fission is essential in intracellular transport. Acyl-coenzyme As (acyl-CoAs) are important in lipid remodelling and are required for fission of COPI-coated vesicles. Here we show that CtBP/BARS, a protein that functions in the dynamics of Golgi tubules, is an essential component of the fission machinery operating at Golgi tubular networks, including Golgi compartments involved in protein transport and sorting. CtBP/BARS-induced fission was preceded by the formation of constricted sites in Golgi tubules, whose extreme curvature is likely to involve local changes in the membrane lipid composition. We find that CtBP/BARS uses acyl-CoA to selectively catalyse the acylation of lysophosphatidic acid to phosphatidic acid both in pure lipidic systems and in Golgi membranes, and that this reaction is essential for fission. Our results indicate a key role for lipid metabolic pathways in membrane fission.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Riccardo Filadi; Elisa Greotti; Gabriele Turacchio; Alberto Luini; Tullio Pozzan; Paola Pizzo
Significance The privileged interrelationship between mitochondria and the endoplasmic reticulum (ER) plays a key role in a variety of physiological functions, from lipid metabolism to Ca2+ signalling, and its modulation influences apoptotic susceptibility, mitophagy, and cellular bioenergetics. Among the several proteins known to influence ER–mitochondria interactions, mitofusin 2 (Mfn2) has been proposed to form a physical tether. In this study, we demonstrate that Mfn2 instead works as an ER–mitochondria tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles. Cells in which Mfn2 is ablated or reduced have an increased number of ER–mitochondria close contacts, potentiated Ca2+ transfer between the two organelles, and greater sensitivity to cell-death stimuli that implies mitochondria Ca2+ overload toxicity. The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER–mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca2+ transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca2+ overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER–mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER–mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.
Nature Cell Biology | 2005
Matteo Bonazzi; Stefania Spanò; Gabriele Turacchio; Claudia Cericola; Carmen Valente; Antonino Colanzi; Hee Seok Kweon; Victor W. Hsu; Elena V. Polishchuck; Roman S. Polishchuck; Michele Sallese; Teodoro Pulvirenti; Daniela Corda; Alberto Luini
Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.
The EMBO Journal | 2008
Prisca Liberali; Elina Kakkonen; Gabriele Turacchio; Carmen Valente; Alexander Spaar; Giuseppe Perinetti; Rainer A. Böckmann; Daniela Corda; Antonino Colanzi; Varpu Marjomäki; Alberto Luini
Membrane fission is an essential process in membrane trafficking and other cellular functions. While many fissioning and trafficking steps are mediated by the large GTPase dynamin, some fission events are dynamin independent and involve C‐terminal‐binding protein‐1/brefeldinA‐ADP ribosylated substrate (CtBP1/BARS). To gain an insight into the molecular mechanisms of CtBP1/BARS in fission, we have studied the role of this protein in macropinocytosis, a dynamin‐independent endocytic pathway that can be synchronously activated by growth factors. Here, we show that upon activation of the epidermal growth factor receptor, CtBP1/BARS is (a) translocated to the macropinocytic cup and its surrounding membrane, (b) required for the fission of the macropinocytic cup and (c) phosphorylated on a specific serine that is a substrate for p21‐activated kinase, with this phosphorylation being essential for the fission of the macropinocytic cup. Importantly, we also show that CtBP1/BARS is required for macropinocytic internalization and infection of echovirus 1. These results provide an insight into the molecular mechanisms of CtBP1/BARS activation in membrane fissioning, and extend the relevance of CtBP1/BARS‐induced fission to human viral infection.
Nature Cell Biology | 2008
Teodoro Pulvirenti; Monica Giannotta; Mariagrazia Capestrano; Mirco Capitani; Antonio Pisanu; Roman S. Polishchuk; Enrica San Pietro; Galina V. Beznoussenko; Alexander A. Mironov; Gabriele Turacchio; Victor W. Hsu; Michele Sallese; Alberto Luini
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; however, the molecular basis of this coordination is unknown. Here we describe a Golgi-based signalling system that is activated by traffic and is involved in monitoring and balancing trafficking rates into and out of the Golgi complex. We provide evidence that the traffic signal is due to protein chaperones that leave the endoplasmic reticulum and reach the Golgi complex where they bind to the KDEL receptor. This initiates a signalling reaction that includes the activation of a Golgi pool of Src kinases and a phosphorylation cascade that in turn activates intra-Golgi trafficking, thereby maintaining the dynamic equilibrium of the Golgi complex. The concepts emerging from this study should help to understand the control circuits that coordinate high-order cellular functions.
Nature Cell Biology | 2008
Jia Shu Yang; Helge Gad; Stella Y. Lee; Alexander A. Mironov; Leiliang Zhang; Galina V. Beznoussenko; Carmen Valente; Gabriele Turacchio; Akua N. Bonsra; Guangwei Du; Gianluca Baldanzi; Andrea Graziani; Sylvain G. Bourgoin; Michael A. Frohman; Alberto Luini; Victor W. Hsu
Proteins essential for vesicle formation by the Coat Protein I (COPI) complex are being identified, but less is known about the role of specific lipids. Brefeldin-A ADP-ribosylated substrate (BARS) functions in the fission step of COPI vesicle formation. Here, we show that BARS induces membrane curvature in cooperation with phosphatidic acid. This finding has allowed us to further delineate COPI vesicle fission into two sub-stages: 1) an earlier stage of bud-neck constriction, in which BARS and other COPI components are required, and 2) a later stage of bud-neck scission, in which phosphatidic acid generated by phospholipase D2 (PLD2) is also required. Moreover, in contrast to the disruption of the Golgi seen on perturbing the core COPI components (such as coatomer), inhibition of PLD2 causes milder disruptions, suggesting that such COPI components have additional roles in maintaining Golgi structure other than through COPI vesicle formation.
The EMBO Journal | 2007
Antonino Colanzi; Cristina Hidalgo Carcedo; Angela Persico; Claudia Cericola; Gabriele Turacchio; Matteo Bonazzi; Alberto Luini; Daniela Corda
The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1‐S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell‐cycle arrest in G2, defining the ‘Golgi mitotic checkpoint’. Here, we clarify the precise stage of Golgi fragmentation required for mitotic entry and the role of BARS in this process. Thus, during G2, the Golgi ribbon is converted into isolated stacks by fission of interstack connecting tubules. This requires BARS and is sufficient for G2/M transition. Cells without a Golgi ribbon are independent of BARS for Golgi fragmentation and mitotic entrance. Remarkably, fibroblasts from BARS‐knockout embryos have their Golgi complex divided into isolated stacks at all cell‐cycle stages, bypassing the need for BARS for Golgi fragmentation. This identifies the precise stage of Golgi fragmentation and the role of BARS in the Golgi mitotic checkpoint, setting the stage for molecular analysis of this process.
Nature Cell Biology | 2011
Jia Shu Yang; Carmen Valente; Roman S. Polishchuk; Gabriele Turacchio; Emilie Layre; D. Branch Moody; Christina C. Leslie; Michael H. Gelb; William J. Brown; Daniela Corda; Alberto Luini; Victor W. Hsu
Intracellular transport occurs through two general types of carrier, either vesicles or tubules. Coat proteins act as the core machinery that initiates vesicle formation, but the counterpart that initiates tubule formation has been unclear. Here, we find that the coat protein I (COPI) complex initially drives the formation of Golgi buds. Subsequently, a set of opposing lipid enzymatic activities determines whether these buds become vesicles or tubules. Lysophosphatidic acid acyltransferase-γ (LPAATγ) promotes COPI vesicle fission for retrograde vesicular transport. In contrast, cytosolic phospholipase A2-α (cPLA2α) inhibits this fission event to induce COPI tubules, which act in anterograde intra-Golgi transport and Golgi ribbon formation. These findings not only advance a molecular understanding of how COPI vesicle fission is achieved, but also provide insight into how COPI acts in intra-Golgi transport and reveal an unexpected mechanistic relationship between vesicular and tubular transport.
Nature Cell Biology | 2012
Carmen Valente; Gabriele Turacchio; Stefania Mariggiò; Alessandro Pagliuso; Renato Gaibisso; Giuseppe Di Tullio; Michele Santoro; Fabio Formiggini; Stefania Spanò; Daniele Piccini; Roman S. Polishchuk; Antonino Colanzi; Alberto Luini; Daniela Corda
Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIβ, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIβ, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.
Cell Reports | 2016
Riccardo Filadi; Elisa Greotti; Gabriele Turacchio; Alberto Luini; Tullio Pozzan; Paola Pizzo
Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimers disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis.