Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriella A.M. Ten Have is active.

Publication


Featured researches published by Gabriella A.M. Ten Have.


Hepatology | 2015

Metabolic and molecular responses to leucine‐enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis

Cynthia Tsien; Gangarao Davuluri; Dharmvir Singh; Allawy Allawy; Gabriella A.M. Ten Have; Samjhana Thapaliya; John M. Schulze; David S. Barnes; Arthur J. McCullough; M.P. Engelen; Nicolaas E. P. Deutz; Srinivasan Dasarathy

Skeletal muscle loss (sarcopenia) is a major clinical complication in alcoholic cirrhosis with no effective therapy. Skeletal muscle autophagic proteolysis and myostatin expression (inhibitor of protein synthesis) are increased in cirrhosis and believed to contribute to anabolic resistance. A prospective study was performed to determine the mechanisms of sarcopenia in alcoholic cirrhosis and potential reversal by leucine. In six well‐compensated, stable, alcoholic patients with cirrhosis and eight controls, serial vastus lateralis muscle biopsies were obtained before and 7 hours after a single oral branched chain amino acid mixture enriched with leucine (BCAA/LEU). Primed‐constant infusion of l‐[ring‐2H5]‐phenylalanine was used to quantify whole‐body protein breakdown and muscle protein fractional synthesis rate using liquid chromatography/mass spectrometry. Muscle expression of myostatin, mammalian target of rapamycin (mTOR) targets, autophagy markers, protein ubiquitination, and the intracellular amino acid deficiency sensor general control of nutrition 2 were quantified by immunoblots and the leucine exchanger (SLC7A5) and glutamine transporter (SLC38A2), by real‐time polymerase chain reaction. Following oral administration, plasma BCAA concentrations showed a similar increase in patients with cirrhosis and controls. Skeletal muscle fractional synthesis rate was 9.63 ± 0.36%/hour in controls and 9.05 ± 0.68%/hour in patients with cirrhosis (P = 0.54). Elevated whole‐body protein breakdown in patients with cirrhosis was reduced with BCAA/LEU (P = 0.01). Fasting skeletal muscle molecular markers showed increased myostatin expression, impaired mTOR signaling, and increased autophagy in patients with cirrhosis compared to controls (P < 0.01). The BCAA/LEU supplement did not alter myostatin expression, but mTOR signaling, autophagy measures, and general control of nutrition 2 activation were consistently reversed in cirrhotic muscle (P < 0.01). Expression of SLC7A5 was higher in the basal state in patients with cirrhosis than controls (P < 0.05) but increased with BCAA/LEU only in controls (P < 0.001). Conclusions: Impaired mTOR1 signaling and increased autophagy in skeletal muscle of patients with alcoholic cirrhosis is acutely reversed by BCAA/LEU. (Hepatology 2015;61:2018‐2029)


Peptides | 2008

Pharmacokinetics of proline-rich tripeptides in the pig

Pieter C. van der Pijl; Arie K. Kies; Gabriella A.M. Ten Have; Guus S.M.J.E. Duchateau; Nicolaas E. P. Deutz

Tripeptides may possess bioactive properties. For instance, blood pressure lowering is attributed to the proline-rich tripeptides Ile-Pro-Pro (IPP), Leu-Pro-Pro (LPP), and Val-Pro-Pro (VPP). However, little is known about their absorption, distribution, and elimination characteristics. The aim of this study was to characterize the pharmacokinetic behavior of IPP, LPP, and VPP in a conscious pig model. Synthetic IPP, LPP, and VPP were administered intravenously or intragastrically (4.0 mg kg(-1) BW in saline) to 10 piglets (approximately 25 kg body weight) in the postabsorptive state. After intravenous dosing, the elimination half-life for IPP was significantly higher (P<0.001) than for LPP and VPP (2.5+/-0.1, 1.9+/-0.1, and 2.0+/-0.1 min, respectively). After intragastric dosing, however, the elimination half-lives were not significantly different between the peptides (9+/-1, 15+/-4, and 12+/-6 min, respectively). Maximum plasma concentrations were about 10 nmol l(-1) for the three tripeptides. The fraction dose absorbed was 0.077+/-0.010, 0.059+/-0.009, and 0.073+/-0.015%, for IPP, LPP, and VPP, respectively. Proline-rich tripeptides reach the blood circulation intact, with an absolute bioavailability of about 0.1% when administered via a saline solution. Because half-lives of absorption and elimination were maximally about 5 and 15 min, respectively, this suggests that under these conditions a bioactive effect of these tripeptides would be rather acute.


American Journal of Physiology-endocrinology and Metabolism | 2015

Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism

Marieke G. Schooneman; Gabriella A.M. Ten Have; Naomi van Vlies; Sander M. Houten; Nicolaas E. P. Deutz; Maarten R. Soeters

Acylcarnitines are derived from mitochondrial acyl-CoA metabolism and have been associated with diet-induced insulin resistance. However, plasma acylcarnitine profiles have been shown to poorly reflect whole body acylcarnitine metabolism. We aimed to clarify the individual role of different organ compartments in whole body acylcarnitine metabolism in a fasted and postprandial state in a porcine transorgan arteriovenous model. Twelve cross-bred pigs underwent surgery where intravascular catheters were positioned before and after the liver, gut, hindquarter muscle compartment, and kidney. Before and after a mixed meal, we measured acylcarnitine profiles at several time points and calculated net transorgan acylcarnitine fluxes. Fasting plasma acylcarnitine concentrations correlated with net hepatic transorgan fluxes of free and C2- and C16-carnitine. Transorgan acylcarnitine fluxes were small, except for a pronounced net hepatic C2-carnitine production. The peak of the postprandial acylcarnitine fluxes was between 60 and 90 min. Acylcarnitine production or release was seen in the gut and liver and consisted mostly of C2-carnitine. Acylcarnitines were extracted by the kidney. No significant net muscle acylcarnitine flux was observed. We conclude that liver has a key role in acylcarnitine metabolism, with high net fluxes of C2-carnitine both in the fasted and fed state, whereas the contribution of skeletal muscle is minor. These results further clarify the role of different organ compartments in the metabolism of different acylcarnitine species.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Nitric oxide and l-arginine metabolism in a devascularized porcine model of acute liver failure

Vikram Sharma; Gabriella A.M. Ten Have; Lars M. Ytrebø; Sambit Sen; Christopher F. Rose; R. Neil Dalton; Charles Turner; Arthur Revhaug; Hans M.H. van-Eijk; Nicolaas E. P. Deutz; Rajiv Jalan; Rajeshwar P. Mookerjee; Nathan Davies

In acute liver failure (ALF), the hyperdynamic circulation is believed to be the result of overproduction of nitric oxide (NO) in the splanchnic circulation. However, it has been suggested that arginine concentrations (the substrate for NO) are believed to be decreased, limiting substrate availability for NO production. To characterize the metabolic fate of arginine in early-phase ALF, we systematically assessed its interorgan transport and metabolism and measured the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) in a porcine model of ALF. Female adult pigs (23-30 kg) were randomized to sham (N = 8) or hepatic devascularization ALF (N = 8) procedure for 6 h. We measured plasma arginine, citrulline, ornithine levels; arginase activity, NO, and ADMA. Whole body metabolic rates and interorgan flux measurements were calculated using stable isotope-labeled amino acids. Plasma arginine decreased >85% of the basal level at t = 6 h (P < 0.001), whereas citrulline and ornithine progressively increased in ALF (P < 0.001 and P < 0.001, vs. sham respectively). No difference was found between the groups in the whole body rate of appearance of arginine or NO. However, ALF showed a significant increase in de novo arginine synthesis (P < 0.05). Interorgan data showed citrulline net intestinal production and renal consumption that was related to net renal production of arginine and ornithine. Both plasma arginase activity and plasma ADMA levels significantly increased in ALF (P < 0.001). In this model of early-phase ALF, arginine deficiency or higher ADMA levels do not limit whole body NO production. Arginine deficiency is caused by arginase-related arginine clearance in which arginine production is stimulated de novo.


PLOS ONE | 2015

Enhanced Lacto-Tri-Peptide Bio-Availability by Co-Ingestion of Macronutrients

Gabriella A.M. Ten Have; Pieter C. van der Pijl; Arie K. Kies; Nicolaas E. P. Deutz

Some food-derived peptides possess bioactive properties, and may affect health positively. For example, the C-terminal lacto-tri-peptides Ile-Pro-Pro (IPP), Leu-Pro-Pro (LPP) and Val-Pro-Pro (VPP) (together named here XPP) are described to lower blood pressure. The bioactivity depends on their availability at the site of action. Quantitative trans-organ availability/kinetic measurements will provide more insight in C-terminal tri-peptides behavior in the body. We hypothesize that the composition of the meal will modify their systemic availability. We studied trans-organ XPP fluxes in catheterized pigs (25 kg; n=10) to determine systemic and portal availability, as well as renal and hepatic uptake of a water-based single dose of synthetic XPP and a XPP containing protein matrix (casein hydrolyte, CasH). In a second experiment (n=10), we compared the CasH-containing protein matrix with a CasH-containing meal matrix and the modifying effects of macronutrients in a meal on the availability (high carbohydrates, low quality protein, high fat, and fiber). Portal availability of synthetic XPP was 0.08 ± 0.01% of intake and increased when a protein matrix was present (respectively 3.1, 1.8 and 83 times for IPP, LPP and VPP). Difference between individual XPP was probably due to release from longer peptides. CasH prolonged portal bioavailability with 18 min (absorption half-life, synthetic XPP: 15 ± 2 min, CasH: 33 ± 3 min, p<0.0001) and increased systemic elimination with 20 min (synthetic XPP: 12 ± 2 min; CasH: 32 ± 3 min, p<0.0001). Subsequent renal and hepatic uptake is about 75% of the portal release. A meal containing CasH, increased portal 1.8 and systemic bioavailability 1.2 times. Low protein quality and fiber increased XPP systemic bioavailability further (respectively 1.5 and 1.4 times). We conclude that the amount and quality of the protein, and the presence of fiber in a meal, are the main factors that increase the systemic bioavailability of food-derived XPP.


Clinical Nutrition | 2017

Transhepatic bile acid kinetics in pigs and humans

Hannah M. Eggink; F. Samuel van Nierop; Marieke G. Schooneman; Anita Boelen; Andries Kalsbeek; Martijn Koehorst; Gabriella A.M. Ten Have; L. Maurits de Brauw; Albert K. Groen; Johannes A. Romijn; Nicolaas E. P. Deutz; Maarten R. Soeters

BACKGROUND & AIMS Bile acids (BAs) play a key role in lipid uptake and metabolic signalling in different organs including gut, liver, muscle and brown adipose tissue. Portal and peripheral plasma BA concentrations increase after a meal. However, the exact kinetics of postprandial BA metabolism have never been described in great detail. We used a conscious porcine model to investigate postprandial plasma concentrations and transorgan fluxes of BAs, glucose and insulin using the para-aminohippuric acid dilution method. METHODS Eleven pigs with intravascular catheters received a standard mixed-meal while blood was sampled from different veins such as the portal vein, abdominal aorta and hepatic vein. To translate the data to humans, fasted venous and portal blood was sampled from non-diabetic obese patients during gastric by-pass surgery. RESULTS The majority of the plasma bile acid pool and postprandial response consisted of glycine-conjugated forms of primary bile acids. Conjugated bile acids were more efficiently cleared by the liver than unconjugated forms. The timing and size of the postprandial response showed large interindividual variability for bile acids compared to glucose and insulin. CONCLUSIONS The liver selectively extracts most BAs and BAs with highest affinity for the most important metabolic BA receptor, TGR5, are typically low in both porcine and human peripheral circulation. Our findings raise questions about the magnitude of a peripheral TGR5 signal and its ultimate clinical application.


Clinical Nutrition | 2012

Absence of post-prandial gut anabolism after intake of a low quality protein meal.

Gabriella A.M. Ten Have; M.P. Engelen; P.B. Soeters; Nicolaas E. P. Deutz

BACKGROUND & AIMS Gut health relates to a diet with a high digestibility and quality. Limited data are available on the acute effects of low quality foods on gut metabolism and the consequences for liver metabolism. METHODS A meal with the low quality protein gelatin (tryptophan deficient and low amount of essential amino acids) was compared to a meal with the high quality protein Whey and a tryptophan supplemented gelatin meal (Gel + TRP) in healthy pigs with chronic implanted catheters. In a conscious state, amino acid, ammonia, urea, glucose and lactate fluxes across the portal drained viscera (PDV) and liver were studied for 6 h after administration of the protein meal. RESULTS The average net portal appearance of amino acids was 99.8 ± 14.6% of the intake in the Gel group as compared to 61.4 ± 9.0% (p = 0.022) in the Whey group. In addition, a net portal appearance of tryptophan was observed in the Gel group (p = 0.005) of about 42% of tryptophan released in the Whey group. Intestinal energy metabolism and citrulline production was not affected. Adding tryptophan to the Gel meal diminished net portal AA appearance to 41.6 ± 24.0% of the intake (p = 0.012), but did not reduce the stimulated liver urea production. CONCLUSIONS In the post-prandial phase after intake of a low protein quality meal, net anabolism in the healthy intestine is absent. It is likely that the intestine responds with a net breakdown of endogenous (labile) proteins to secure amino acid availability for the body. Addition of the first limiting essential amino acid to this meal improved protein anabolism in the intestine. Protein quality of a meal is related to the anabolic response of the intestine during the meal.


American Journal of Physiology-endocrinology and Metabolism | 2017

Phenylalanine isotope pulse method to measure effect of sepsis on protein breakdown and membrane transport in the pig.

Gabriella A.M. Ten Have; M.P. Engelen; Robert R. Wolfe; Nicolaas E. P. Deutz

The primed-continuous (PC) phenylalanine (Phe) stable isotope infusion methodology is often used as a proxy for measuring whole body protein breakdown (WbPB) in sepsis. It is unclear if WbPB data obtained by an easy-to-use single IV Phe isotope pulse administration (PULSE) are comparable to those by PC. Compartmental modeling with PULSE could provide us more insight in WbPB in sepsis. Therefore, in the present study, we compared PULSE with PC as proxy for WbPB in an instrumented pig model with Pseudomonas aeruginosa-induced severe sepsis (Healthy: n = 9; Sepsis: n = 13). Seventeen hours after sepsis induction, we compared the Wb rate of appearance (WbRa) of Phe obtained by PC (L-[ring-13C6]Phe) and PULSE (L-[15N]Phe) in arterial plasma using LC-MS/MS and (non)compartmental modeling. PULSE-WbRa was highly correlated with PC-WbRa (r = 0.732, P < 0.0001) and WbPB (r = 0.897, P < 0.0001) independent of the septic state. PULSE-WbRa was 1.6 times higher than PC-WbRa (P < 0.001). Compartmental and noncompartmental PULSE modeling provide comparable WbRa values, although compartmental modeling was more sensitive. WbPB was elevated in sepsis (Healthy: 3,378 ± 103; Sepsis: 4,333 ± 160 nmol·kg BW-1·min-1, P = 0.0002). With PULSE, sepsis was characterized by an increase of the metabolic shunting (Healthy: 3,021 ± 347; Sepsis: 4,233 ± 344 nmol·kg BW-1·min-1, P = 0.026). Membrane transport capacity was the same. Both PC and PULSE methods are able to assess changes in WbRa of plasma Phe reflecting WbPB changes with high sensitivity, independent of the (patho)physiological state. The easy-to-use (non)compartmental PULSE reflects better the real WbPB than PC. With PULSE compartmental analysis, we conclude that the membrane transport capacity for amino acids is not compromised in severe sepsis.


Metabolic Brain Disease | 2017

The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis

Cristina R. Bosoi; Mariana Oliveira; Rafael Ochoa-Sanchez; Mélanie Tremblay; Gabriella A.M. Ten Have; Nicolaas E. P. Deutz; Christopher F. Rose; Chantal Bémeur

Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.


Metabolism-clinical and Experimental | 2018

Metabolic phenotyping using kinetic measurements in young and older healthy adults

Nicolaas E. P. Deutz; John J. Thaden; Gabriella A.M. Ten Have; Dillon K. Walker; M.P. Engelen

BACKGROUND The aging process is often associated with the presence of sarcopenia. Although changes in the plasma concentration of several amino acids have been observed in older adults, it remains unclear whether these changes are related to disturbances in whole body production and/or interconversions. METHODS We studied 10 healthy young (~22.7y) and 17 older adults (~64.8y) by administering a mixture of stable amino acid tracers in a pulse and in a primed constant infusion. We calculated whole body production (WBP) and metabolite to metabolite interconversions. In addition, we measured body composition, muscle function, and provided questionnaires to assess daily dietary intake, physical activity, mood (anxiety, depression) and markers of cognitive function. Plasma enrichments and metabolite concentrations were measured by GC- and LC-MS/MS and statistics were performed by student t-test. RESULTS Older adults had a 11% higher body mass index (p=0.04) and 27% reduced peak leg extension force (p=0.02) than the younger group, but comparable values for muscle mass, mood and cognitive function. Although small differences in several plasma amino acid concentrations were observed, we found older adults had about 40% higher values of WBP for glutamine (221±27 vs. 305±21μmol/kgffm/h, p=0.03) and tau-methylhistidine (0.15±0.01 vs. 0.21±0.02μmol/kgffm/h, p=0.04), 26% lower WBP value for arginine (59±4 vs. 44±4μmol/kgffm/h, p=0.02) and a reduction in WBP (50%; 1.23±0.15 vs. 0.69±0.06μmol/kgffm/h, p=0.001) and concentration (25%; 3.5±0.3μmol/l vs. 2.6±0.2μmol/l, p=0.01) for β-Hydroxy β-Methylbutyrate. No differences were observed in protein catabolism. Clearance of arginine was decreased (27%, p=0.03) and clearance of glutamine (58%, p=0.01), leucine (67%, p=0.001) and KIC (76%, p=0.004) were increased in older adults. CONCLUSIONS Specific differences exist between young and older adults in amino acid metabolism.

Collaboration


Dive into the Gabriella A.M. Ten Have's collaboration.

Top Co-Authors

Avatar

Robert R. Wolfe

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajiv Jalan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge