Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriella Cotugno is active.

Publication


Featured researches published by Gabriella Cotugno.


American Journal of Human Genetics | 2007

Filamin A Is Mutated in X-Linked Chronic Idiopathic Intestinal Pseudo-Obstruction with Central Nervous System Involvement

Annagiusi Gargiulo; Renata Auricchio; Maria Vittoria Barone; Gabriella Cotugno; William Reardon; Peter J. Milla; Andrea Ballabio; Alfredo Ciccodicola; Alberto Auricchio

We have previously reported that an X-linked recessive form of chronic idiopathic intestinal pseudo-obstruction (CIIPX) maps to Xq28. To select candidate genes for the disease, we analyzed the expression in murine fetal brain and intestine of 56 genes from the critical region. We selected and sequenced seven genes and found that one affected male from a large CIIPX-affected kindred bears a 2-bp deletion in exon 2 of the FLNA gene that is present at the heterozygous state in the carrier females of the family. The frameshift mutation is located between two close methionines at the filamin N terminus and is predicted to produce a protein truncated shortly after the first predicted methionine. Loss-of-function FLNA mutations have been associated with X-linked dominant nodular ventricular heterotopia (PVNH), a central nervous system (CNS) migration defect that presents with seizures in females and lethality in males. Notably, the affected male bearing the FLNA deletion had signs of CNS involvement and potentially has PVNH. To understand how the severe frameshift mutation we found can explain the CIIPX phenotype and its X-linked recessive inheritance, we transiently expressed both the wild- type and mutant filamin in cell culture and found that filamin translation can start from either of the two initial methionines in these conditions. Therefore, translation of a normal shorter filamin can occur in vitro from the second methionine downstream of the 2-bp insertion we found. We confirmed this, demonstrating that the filamin protein is present in the patients lymphoblastoid cell line that shows abnormal cytoskeletal actin organization compared with normal lymphoblasts. We conclude that the filamin N terminal region between the initial two methionines is crucial for proper enteric neuron development.


Trends in Molecular Medicine | 2009

Ocular gene therapy: current progress and future prospects

Pasqualina Colella; Gabriella Cotugno; Alberto Auricchio

As gene therapy begins to produce its first clinical successes, interest in ocular gene transfer has grown owing to the favorable safety and efficacy characteristics of the eye as a target organ for drug delivery. Important advances also include the availability of viral and non-viral vectors that are able to efficiently transduce various ocular cell types, the use of intraocular delivery routes and the development of transcriptional regulatory elements that allow sustained levels of gene transfer in small and large animal models after a single administration. Here, we review recent progress in the field of ocular gene therapy. The first experiments in humans with severe inherited forms of blindness seem to confirm the good safety and efficacy profiles observed in animal models and suggest that gene transfer has the potential to become a valuable therapeutic strategy for otherwise untreatable blinding diseases.


Expert Opinion on Biological Therapy | 2006

AAV-mediated gene transfer for retinal diseases

Mariacarmela Allocca; Alessandra Tessitore; Gabriella Cotugno; Alberto Auricchio

Vectors based on the adeno-associated virus (rAAV) are able to transduce the retina of animal models, including non-human primates, for a long-term period, safely and at sustained levels. The ability of the various rAAV serotypes to transduce retinal target cells has been exploited to successfully transfer genes to photoreceptors, retinal pigment epithelium and the inner retina, which are affected in many inherited and non-inherited blinding diseases. rAAV-mediated, constitutive and regulated gene expression at therapeutic levels has been achieved in the retina of animal models, thus providing proof-of-principle of gene therapy efficacy and safety in models of dominant and recessive retinal disorders. In addition, gene transfer of molecules with either neurotrophic or antiangiogenic properties provides useful alternatives to the classic gene replacement for treatment of both mendelian and complex traits affecting the retina. Years of successful rAAV-mediated gene transfer to the retina have resulted in restoration of vision in dogs affected with congenital blindness. This has paved the way to the first attempts at treating inherited retinal diseases in humans with rAAV. Although the results of rAAV clinical trials for non-retinal diseases give a warning that the outcome of viral-mediated gene transfer in humans may be different from that predicted based on results in other species, the immune privilege of the retina combined with the versatility of rAAV serotypes may ultimately provide the first successful treatment of human inherited diseases using rAAV.


Molecular Therapy | 2011

Long-term amelioration of feline Mucopolysaccharidosis VI after AAV-mediated liver gene transfer.

Gabriella Cotugno; Patrizia Annunziata; Alessandra Tessitore; Thomas O'Malley; Anita Capalbo; Armida Faella; Rosa Bartolomeo; Patricia O'Donnell; Ping Wang; Fabio Russo; Meg M. Sleeper; Van W. Knox; Steven Fernandez; Leah Levanduski; John J. Hopwood; Elvira De Leonibus; Mark E. Haskins; Alberto Auricchio

Mucopolysaccharidosis VI (MPS VI) is caused by deficient arylsulfatase B (ARSB) activity resulting in lysosomal storage of glycosaminoglycans (GAGs). MPS VI is characterized by dysostosis multiplex, organomegaly, corneal clouding, and heart valve thickening. Gene transfer to a factory organ like liver may provide a lifetime source of secreted ARSB. We show that intravascular administration of adeno-associated viral vectors (AAV) 2/8-TBG-felineARSB in MPS VI cats resulted in ARSB expression up to 1 year, the last time point of the study. In newborn cats, normal circulating ARSB activity was achieved following delivery of high vector doses (6 × 10(13) genome copies (gc)/kg) whereas delivery of AAV2/8 vector doses as low as 2 × 10(12) gc/kg resulted in higher than normal serum ARSB levels in juvenile MPS VI cats. In MPS VI cats showing high serum ARSB levels, independent of the age at treatment, we observed: (i) clearance of GAG storage, (ii) improvement of long bone length, (iii) reduction of heart valve thickness, and (iv) improvement in spontaneous mobility. Thus, AAV2/ 8-mediated liver gene transfer represents a promising therapeutic strategy for MPS VI patients.


Human Gene Therapy | 2013

Gene therapy for mucopolysaccharidosis type VI is effective in cats without pre-existing immunity to AAV8.

Rita Ferla; Thomas O'Malley; Roberto Calcedo; Patricia O'Donnell; Ping Wang; Gabriella Cotugno; Pamela Claudiani; James M. Wilson; Mark E. Haskins; Alberto Auricchio

Liver gene transfer with adeno-associated viral (AAV) 2/8 vectors is being considered for therapy of systemic diseases like mucopolysaccharidosis type VI (MPS VI), a lysosomal storage disease due to deficiency of arylsulfatase B (ARSB). We have previously reported that liver gene transfer with AAV2/8 results in sustained yet variable expression of ARSB. We hypothesized that the variability we observed could be due to pre-existing immunity to wild-type AAV8. To test this, we compared the levels of AAV2/8-mediated transduction in MPS VI cats with and without pre-existing immunity to AAV8. In addition, since levels of lysosomal enzymes as low as 5% of normal are expected to be therapeutic, we evaluated the impact of pre-existing immunity on MPS VI phenotypic rescue. AAV2/8 administration to MPS VI cats without pre-existing neutralizing antibodies to AAV8 resulted in consistent and dose-dependent expression of ARSB, urinary glycosaminoglycan (GAG) reduction, and femur length amelioration. Conversely, animals with pre-existing immunity to AAV8 showed low levels of ARSB expression and limited phenotypic improvement. Our data support the use of AAV2/8-mediated gene transfer for MPS VI and other systemic diseases, and highlight that pre-existing immunity to AAV8 should be considered in determining subject eligibility for therapy.


Human Gene Therapy | 2010

Different serum enzyme levels are required to rescue the various systemic features of the mucopolysaccharidoses.

Gabriella Cotugno; Alessandra Tessitore; Anita Capalbo; Patrizia Annunziata; Caterina Strisciuglio; Armida Faella; Michela Aurilio; Maurizio Di Tommaso; Fabio Russo; Antonio Mancini; Elvira De Leonibus; Luigi Aloj; Alberto Auricchio

Mucopolysaccharidoses (MPSs) are lysosomal storage disorders characterized by progressive accumulation of glycosaminoglycans (GAGs) in various tissues. Enzyme replacement therapy (ERT) for several MPSs is available to date. However, the efficacy of ERT is limited, in particular in compartments such as bone, cartilage, the brain, and the eyes. We selected a rodent model of an MPS, with no central nervous system storage, to study the impact, on systemic features of the disease, of various stable levels of exogenous enzymes produced by adeno-associated viral vector (AAV)-mediated liver gene transfer. Low levels (6% of normal) of circulating enzyme were enough to reduce storage and inflammation in the visceral organs and to ameliorate skull abnormalities; intermediate levels (11% of normal) were required to reduce urinary GAG excretion; and high levels (>or=50% of normal) rescued abnormalities of the long bones and motor activity. These data will be instrumental to design appropriate clinical protocols based on either enzyme or gene replacement therapy for MPS and to predict their impact on the pathological features of MPS.


PLOS ONE | 2012

Impact of age at administration, lysosomal storage, and transgene regulatory elements on AAV2/8-mediated rat liver transduction

Gabriella Cotugno; Patrizia Annunziata; Maria Vittoria Barone; Marianthi Karali; Sandro Banfi; Alberto Auricchio

Liver-directed gene transfer is being investigated for the treatment of systemic or liver-specific diseases. Recombinant vectors based on adeno-associated virus serotype 8 (AAV2/8) efficiently transduce liver cells allowing long term transgene expression after a single administration in animal models and in patients. We evaluated the impact on AAV2/8-mediated rat liver transduction of the following variables: i) age at vector administration, ii) presence of lysosomal storage in liver cells, and iii) regulatory elements included in the transgene expression cassette. We found that systemic administration of AAV2/8 to newborn rats results in vector genome dilution and reduced transduction efficacy when compared to adult injected animals, presumably due to hepatocyte proliferation. Accumulation of glycosaminoglycans in lysosomes does not impact on levels and distribution of AAV2/8-mediated liver transduction. Transgene expression occurs in hepatocytes but not in Kupffer or liver endothelial cells when the liver-specific thyroxine-binding-globulin promoter is used. However, extra-hepatic transduction is observed in the spleen and kidney of animals injected at birth. The use of target sequences for the hematopoietic-specific microRNA miR142-3p does not improve liver transduction efficacy neither reduce immune responses to the lysosomal enzyme arylsulfatase B. The inclusion of a variant of the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE-m) decreases AAV2/8-mediated liver transduction levels. As AAV2/8-mediated liver gene transfer is entering in the clinical arena, these data will provide relevant information to the design of efficient AAV2/8-based therapeutic strategies.


Human Gene Therapy | 2014

Similar Therapeutic Efficacy Between a Single Administration of Gene Therapy and Multiple Administrations of Recombinant Enzyme in a Mouse Model of Lysosomal Storage Disease

Rita Ferla; Pamela Claudiani; Gabriella Cotugno; Paola Saccone; Elvira De Leonibus; Alberto Auricchio

Enzyme replacement therapy (ERT) has become the standard of care for several lysosomal storage disorders (LSDs). Despite ERTs undisputed efficacy, the requirement for multiple and costly administrations as well as ERTs limited improvement of some LSD manifestations prompts the search for better therapies. Using a mouse model of mucopolysaccharidosis VI, we compared the efficacy of a single intravascular administration of an adeno-associated viral vector targeting liver to weekly infusions of human recombinant enzyme at the same doses used in mucopolysaccharidosis VI patients. While gene therapy results in increased and stable levels of circulating enzyme up to 1 year after vector administration, ERT has typical peak-and-drop serum kinetics. Both therapies similarly reduced glycosaminoglycan levels in urine and tissues including heart valves and myocardium, with gene therapy improving skeletal skull abnormalities slightly better, although not significantly, than ERT. Both therapies seem to similarly improve animal motor performance, with gene therapy possibly associated with less animal distress. Thus, a single vector administration that converts liver into a factory organ for systemic secretion of therapeutic proteins is at least as effective as ERT in a mouse model of LSD, potentially eliminating problems with compliance and costs. Only testing in humans will prove whether this holds true in a clinical setting.


Human Gene Therapy | 2011

Noninvasive Repetitive Imaging of Somatostatin Receptor 2 Gene Transfer with Positron Emission Tomography

Gabriella Cotugno; Michela Aurilio; Patrizia Annunziata; Anita Capalbo; Armida Faella; Valentina Rinaldi; Caterina Strisciuglio; Maurizio Di Tommaso; Luigi Aloj; Alberto Auricchio

Noninvasive in vivo imaging of gene expression is desirable to monitor gene transfer in both animal models and humans. Reporter transgenes with low endogenous expression levels are instrumental to this end. The human somatostatin receptor 2 (hSSTR2) has low expression levels in a variety of tissues, including muscle and liver. We tested the possibility of noninvasively and quantitatively monitoring hSSTR2 transgene expression, following adeno-associated viral (AAV) vector-mediated gene delivery to murine muscle and liver by positron emission tomography (PET) using (68)gallium-DOTA-Tyr(3)-Thr(8)-octreotate ((68)Ga-DOTATATE) as a highly specific SSTR2 ligand. Repetitive PET imaging showed hSSTR2 signal up to 6 months, which corresponds to the last time point of the analysis, after gene delivery in both transduced tissues. The levels of tracer accumulation measured in muscle and liver after gene delivery were significantly higher than in control tissues and correlated with the doses of AAV vector administered. As repetitive, quantitative, noninvasive imaging of AAV-mediated SSTR2 gene transfer to muscle and liver is feasible and efficient using PET, we propose this system to monitor the expression of therapeutic genes coexpressed with SSTR2.


Scientific Reports | 2015

Sensory-motor behavioral characterization of an animal model of Maroteaux-Lamy syndrome (or Mucopolysaccharidosis VI)

Paola Saccone; Gabriella Cotugno; Fabio Russo; Rosa Mastrogiacomo; Alessandra Tessitore; Alberto Auricchio; Elvira De Leonibus

Maroteaux-Lamy disease, also known as mucopolysaccharidosis (MPS) VI, is an MPS disorder caused by mutations in the ARSB gene encoding for the lysosomal enzyme arysulfatase B (ARSB). Deficient ARSB activity leads to lysosomal accumulation of dermatan sulfate in a wide range of tissues and organs. There are various animal models of MPS VI that have been well characterized from a biochemical and morphological point of view. In this study, we report the sensory-motor characterization of MPS VI rats carrying homozygous null ARSB mutations. We show that adult MPS VI rats are specifically impaired in vertical activity and motor endurance. All together, these data are consistent with biochemical findings that show a major impairment in connective tissues, such as joints and bones. The behavioral abnormalities of MPS VI rats represent fundamental endpoints for studies aimed at testing the pre-clinical safety and efficacy of novel therapeutic approaches for MPS VI.

Collaboration


Dive into the Gabriella Cotugno's collaboration.

Top Co-Authors

Avatar

Alberto Auricchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alessandra Tessitore

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Enrico Maria Surace

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Patrizia Annunziata

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Anita Capalbo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Elvira De Leonibus

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesco Beguinot

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Pietro Formisano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Fabio Russo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Andrea Ballabio

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge