Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriella Gentile is active.

Publication


Featured researches published by Gabriella Gentile.


Synapse | 2009

In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: Studies in non-human primates and transgenic mice.

Eugenii A. Rabiner; Mark Slifstein; José N. Nobrega; Christophe Plisson; Mickael Huiban; Roger Raymond; Mustansir Diwan; Alan A. Wilson; Patrick McCormick; Gabriella Gentile; Roger N. Gunn; Marc Laruelle

Examination of dopamine‐D3 (D3) receptors with positron emission tomography (PET) have been hampered in the past by the lack of a PET ligand with sufficient selectivity for D3 over dopamine‐D2 (D2) receptors. The two types co‐localize in the brain, with D2 density significantly higher than D3, hence nonselective PET ligands inform on D2, rather than D3 status. [11C]‐(+)‐PHNO is a novel PET ligand with a preferential affinity for D3 over D2. We used the selective D3 antagonist, SB‐277011 to dissect regional fractions of the [11C]‐(+)‐PHNO signal attributable to D3 and D2 in primate brain. The results were compared with quantitative autoradiography with 3H‐(+)‐PHNO in wild‐type, D2‐knock‐out, and D3‐knock‐out mice examined at baseline and following administration of SB‐277011. Both sets of results converged to indicate a predominant D3‐related component to (+)‐PHNO binding in extra‐striatal regions, with binding in the midbrain being entirely attributable to D3. The midbrain is thus an excellent target region to examine D3 receptor occupancy with [11C]‐(+)‐PHNO PET in vivo. Synapse 63:782–793, 2009.


Journal of Medicinal Chemistry | 2010

1,2,4-Triazolyl Azabicyclo[3.1.0]hexanes: A New Series of Potent and Selective Dopamine D3 Receptor Antagonists

Fabrizio Micheli; Luca Arista; Giorgio Bonanomi; Frank E. Blaney; Simone Braggio; Anna Maria Capelli; Anna Checchia; Federica Damiani; Romano Di-Fabio; Stefano Fontana; Gabriella Gentile; Cristiana Griffante; Dieter Hamprecht; Carla Marchioro; Manolo Mugnaini; Jacqui Piner; Emiliangelo Ratti; Giovanna Tedesco; Luca Tarsi; Silvia Terreni; Angela Worby; Charles R. Ashby; Christian Heidbreder

The discovery of new highly potent and selective dopamine (DA) D(3) receptor antagonists has recently allowed the characterization of the DA D(3) receptor in a range of preclinical animal models of drug addiction. A novel series of 1,2,4-triazol-3-yl-azabicyclo[3.1.0]hexanes, members of which showed a high affinity and selectivity for the DA D(3) receptor and excellent pharmacokinetic profiles, is reported here. Members of a group of derivatives from this series showed good oral bioavailability and brain penetration and very high in vitro affinity and selectivity for the DA D(3) receptor, as well as high in vitro potency for antagonism at this receptor. Several members of this series also significantly attenuate the expression of conditioned place preference (CPP) to nicotine and cocaine.


Bioorganic & Medicinal Chemistry Letters | 2012

5-Aryl-4-carboxamide-1,3-oxazoles: Potent and selective GSK-3 inhibitors

Gabriella Gentile; Giancarlo Merlo; Alfonso Pozzan; Giovanni Bernasconi; Benjamin D. Bax; Paul Bamborough; Angela Bridges; Paul S. Carter; Margarete Neu; Gang Yao; Caroline Brough; Geoffrey J. Cutler; Aaron Coffin; Svetlana L. Belyanskaya

5-Aryl-4-carboxamide-1,3-oxazoles are a novel, potent and selective series of GSK-3 inhibitors. The optimization of the series to yield compounds with cell activity and brain permeability is described.


Journal of Medicinal Chemistry | 2008

Synthesis and pharmacological characterization of novel druglike corticotropin-releasing factor 1 antagonists.

Romano Di Fabio; Yves St-Denis; Fabio Maria Sabbatini; Daniele Andreotti; Roberto Arban; Giovanni Bernasconi; Simone Braggio; Frank E. Blaney; Anna Maria Capelli; Emiliano Castiglioni; Enza Di Modugno; Daniele Donati; Elettra Fazzolari; Emiliangelo Ratti; Aldo Feriani; Stefania Contini; Gabriella Gentile; Damiano Ghirlanda; Stefano Provera; Carla Marchioro; Karen Roberts; Anna Mingardi; Mario Mattioli; Arnaldo Nalin; Francesca Pavone; Simone Spada; David G. Trist; Angela Worby

To identify new CRF(1) receptor antagonists, an attempt to modify the bis-heterocycle moiety present in the top region of the dihydropyrrole[2,3]pyridine template was made following new pharmacophoric hypothesis on the CRF(1) receptor antagonists binding pocket. In particular, the 2-thiazole ring, present in the previous series of compounds, was replaced by more hydrophilic non aromatic heterocycles able to make appropriate H-bond interactions with amino acid residues Thr192 and Tyr195. This exploration, followed by an accurate analysis of the substitution of the pendant aryl ring, enabled to identify in vitro potent compounds showing excellent pharmacokinetics and outstanding in vivo activity in animal models of anxiety, both in rodents and primates.


Bioorganic & Medicinal Chemistry Letters | 2010

Pyrrolo[1,2-a]pyrazine and pyrazolo[1,5-a]pyrazine: Novel, potent, and selective series of Vasopressin1b receptor antagonists

Roberto Arban; Federica Bianchi; Alberto Buson; Susanna Cremonesi; Romano Di Fabio; Gabriella Gentile; Fabrizio Micheli; Alessandra Pasquarello; Alfonso Pozzan; Luca Tarsi; Silvia Terreni; Federica Tonelli

Novel series of pyrrole-pyrazinone and pyrazole-pyrazinone have been identified as potent and selective Vasopressin(1b) receptor antagonists. Exploration of the substitution pattern around the core of these templates allowed generation of compounds with high inhibitory potency at the Vasopressin(1b) receptor, including examples that showed good selectivity with respect to Vasopressin(1a), Vasopressin(2), and Oxytocin receptor subtypes.


Synapse | 2010

Identification and evaluation of [11C]GSK931145 as a novel ligand for imaging the type 1 glycine transporter with positron emission tomography.

Jan Passchier; Gabriella Gentile; R. Porter; H. Herdon; Cristian Salinas; Steen Jakobsen; Hélène Audrain; Marc Laruelle; Roger N. Gunn

The type‐1 glycine transporter (GlyT1) is an important target for the development of new medications for schizophrenia. A specific and selective positron emission tomography (PET) GlyT1 ligand would facilitate drug development studies to determine whether a drug reaches this target and help establish suitable doses for clinical trials. This article describes the evaluation of three candidate GlyT1 PET radioligands (GSK931145, GSK565710, and GSK991022) selected from a library of compounds based on favorable physicochemical and pharmacological properties. Each candidate was successfully labeled using [11C]methyl iodide or [11C]methyl triflate and administered to a pig pre‐ and postadministration with a pharmacological dose of a GlyT1 inhibitor to determine their suitability as PET ligands in the porcine brain in vivo. All three candidate ligands were analyzed quantitatively with compartment analyses employing a plasma input function. [11C]GSK931145 showed good brain penetration and a heterogeneous distribution in agreement with reported GlyT1 localization. Following pretreatment with GSK565710, uptake of [11C]GSK931145 was reduced to homogeneous levels. Although [11C]GSK565710 also showed good brain penetration and a heterogeneous distribution, the apparent level of specific binding was reduced compared to [11C]GSK931145. In contrast, [11C]GSK991022 showed a much lower brain penetration and resultant signal following pretreatment with GSK565710. Based on these findings [11C]GSK931145 was identified as the most promising ligand for imaging GlyT1 in the porcine brain, possessing good brain penetration, specific signal, and reversible kinetics. [11C]GSK931145 is now being progressed into higher species. Synapse 64:542–549, 2010.


Journal of Medicinal Chemistry | 2010

Exploration of the amine terminus in a novel series of 1,2,4-triazolo-3-yl-azabicyclo[3.1.0]hexanes as selective dopamine D3 receptor antagonists.

Fabrizio Micheli; Luca Arista; Barbara Bertani; Simone Braggio; Anna Maria Capelli; Susanna Cremonesi; Romano Di-Fabio; Giacomo Gelardi; Gabriella Gentile; Carla Marchioro; Alessandra Pasquarello; Stefano Provera; Giovanna Tedesco; Luca Tarsi; Silvia Terreni; Angela Worby; Christian Heidbreder

A novel series of 1,2,4-triazol-3-yl-azabicyclo[3.1.0]hexanes with high affinity and selectivity for the DA D(3) receptor and excellent pharmacokinetic profiles was recently reported. We also recently discussed the role of the linker associated with the triazole moiety. In this manuscript, we are reporting a detailed exploration of the region of the receptor interacting with the amine terminus of the scaffold wherein SAR and developability data associated with these novel templates was undertaken.


Bioorganic & Medicinal Chemistry Letters | 2009

Dopamine D3 receptor antagonists: The quest for a potentially selective PET ligand. Part 3: Radiosynthesis and in vivo studies

Idriss Bennacef; Cristian Salinas; Thomas Bonasera; Roger N. Gunn; Hélène Audrain; Steen Jakobsen; Nabeel Nabulsi; David Weinzimmer; Richard E. Carson; Yiyun Huang; Ian P. Holmes; Fabrizio Micheli; Christian Heidbreder; Gabriella Gentile; Tino Rossi; Marc Laruelle

Compound 1 is a potent and selective antagonist of the dopamine D(3) receptor. With the aim of developing a carbon-11 labeled ligand for the dopamine D(3) receptor, 1 was selected as a potential PET probe. [(11)C]1 was obtained by palladium catalyzed cross coupling using [(11)C]cyanide and 4 with a specific activity of 55.5+/-25.9GBq/micromol (1.5+/-0.7Ci/micromol). [(11)C]1 was tested in porcine and non-human primate models to assess its potential as a radioligand for PET imaging of the dopamine D(3) receptor. We conclude that in both species and despite appropriate in vitro properties, [(11)C]1 does not show any specific signal for the dopamine D(3) receptor.


Bioorganic & Medicinal Chemistry Letters | 2008

New fused benzazepine as selective D3 receptor antagonists. Synthesis and biological evaluation. Part one : [h]-fused tricyclic systems

Fabrizio Micheli; Giorgio Bonanomi; Simone Braggio; Anna Maria Capelli; Paolo Celestini; Federica Damiani; Romano Di Fabio; Daniele Donati; Stefania Gagliardi; Gabriella Gentile; Dieter Hamprecht; Marcella Petrone; Stefano Radaelli; Giovanna Tedesco; Silvia Terreni; Angela Worby; Christian Heidbreder

The synthesis and SAR of a new series of potent and selective dopamine D(3) receptor antagonists is reported. The introduction of a tricyclic [h]-fused benzazepine moiety on the recently disclosed scaffold of 1,2,4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines is reported. A full rat pharmacokinetic characterization is also reported.


Bioorganic & Medicinal Chemistry Letters | 2011

Identification of 2-(4-pyridyl)thienopyridinones as GSK-3β inhibitors.

Gabriella Gentile; Giovanni Bernasconi; Alfonso Pozzan; Giancarlo Merlo; Paola Marzorati; Paul Bamborough; Benjamin D. Bax; Angela Bridges; Caroline Brough; Paul S. Carter; Geoffrey J. Cutler; Margarete Neu; Mia Takada

The discovery of a novel series of 2-(4-pyridyl)thienopyridinone GSK-3β inhibitors is reported. X-ray crystallography reveals its binding mode and enables rationalization of the SAR. The initial optimization of the template for improved cellular activity and predicted CNS penetration is also presented.

Collaboration


Dive into the Gabriella Gentile's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge