Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriëlle H.S. Buitendijk is active.

Publication


Featured researches published by Gabriëlle H.S. Buitendijk.


Human Molecular Genetics | 2011

Common Variants near FRK/COL10A1 and VEGFA are Associated with Advanced Age-related Macular Degeneration

Yi Yu; Tushar Bhangale; Jesen Fagerness; Stephan Ripke; Gudmar Thorleifsson; Perciliz L. Tan; E. Souied; Andrea J. Richardson; Joanna E. Merriam; Gabriëlle H.S. Buitendijk; Robyn Reynolds; Soumya Raychaudhuri; Kimberly A. Chin; Lucia Sobrin; Evangelos Evangelou; Phil H. Lee; Aaron Y. Lee; Nicolas Leveziel; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; R. Theodore Smith; Gaetano R. Barile; Robyn H. Guymer; Ruth E. Hogg; Usha Chakravarthy; Luba Robman; Omar Gustafsson; Haraldur Sigurdsson; Ward Ortmann

Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10−8] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10−9). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.


Neuron | 2006

αCaMKII is essential for cerebellar LTD and motor learning

Christian Hansel; Marcel T. G. De Jeu; Amor Belmeguenai; S.H. Houtman; Gabriëlle H.S. Buitendijk; Dmitri Andreev; Chris I. De Zeeuw; Ype Elgersma

Activation of postsynaptic alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) by calcium influx is a prerequisite for the induction of long-term potentiation (LTP) at most excitatory synapses in the hippocampus and cortex. Here we show that postsynaptic LTP is unaffected at parallel fiber-Purkinje cell synapses in the cerebellum of alphaCaMKII(-/-) mice. In contrast, a long-term depression (LTD) protocol resulted in only transient depression in juvenile alphaCaMKII(-/-) mutants and in robust potentiation in adult mutants. This suggests that the function of alphaCaMKII in parallel fiber-Purkinje cell plasticity is opposite to its function at excitatory hippocampal and cortical synapses. Furthermore, alphaCaMKII(-/-) mice showed impaired gain-increase adaptation of both the vestibular ocular reflex and optokinetic reflex. Since Purkinje cells are the only cells in the cerebellum that express alphaCaMKII, our data suggest that an impairment of parallel fiber LTD, while leaving LTP intact, is sufficient to disrupt this form of cerebellar learning.


Diabetes Care | 2013

High Bone Mineral Density and Fracture Risk in Type 2 Diabetes as Skeletal Complications of Inadequate Glucose Control: The Rotterdam Study

Ling Oei; M. Carola Zillikens; Abbas Dehghan; Gabriëlle H.S. Buitendijk; Martha C. Castaño-Betancourt; Karol Estrada; Lisette Stolk; Edwin H. G. Oei; Joyce B. J. van Meurs; Joseph A M J L Janssen; Albert Hofman; Johannes P.T.M. van Leeuwen; Jacqueline C. M. Witteman; Huibert A. P. Pols; André G. Uitterlinden; Caroline C. W. Klaver; Oscar H. Franco; Fernando Rivadeneira

OBJECTIVE Individuals with type 2 diabetes have increased fracture risk despite higher bone mineral density (BMD). Our aim was to examine the influence of glucose control on skeletal complications. RESEARCH DESIGN AND METHODS Data of 4,135 participants of the Rotterdam Study, a prospective population-based cohort, were available (mean follow-up 12.2 years). At baseline, 420 participants with type 2 diabetes were classified by glucose control (according to HbA1c calculated from fructosamine), resulting in three comparison groups: adequately controlled diabetes (ACD; n = 203; HbA1c <7.5%), inadequately controlled diabetes (ICD; n = 217; HbA1c ≥7.5%), and no diabetes (n = 3,715). Models adjusted for sex, age, height, and weight (and femoral neck BMD) were used to test for differences in bone parameters and fracture risk (hazard ratio [HR] [95% CI]). RESULTS The ICD group had 1.1–5.6% higher BMD, 4.6–5.6% thicker cortices, and −1.2 to −1.8% narrower femoral necks than ACD and ND, respectively. Participants with ICD had 47–62% higher fracture risk than individuals without diabetes (HR 1.47 [1.12–1.92]) and ACD (1.62 [1.09–2.40]), whereas those with ACD had a risk similar to those without diabetes (0.91 [0.67–1.23]). CONCLUSIONS Poor glycemic control in type 2 diabetes is associated with fracture risk, high BMD, and thicker femoral cortices in narrower bones. We postulate that fragility in apparently “strong” bones in ICD can result from microcrack accumulation and/or cortical porosity, reflecting impaired bone repair.


Nature Genetics | 2013

Identification of a rare coding variant in complement 3 associated with age-related macular degeneration

Xiaowei Zhan; David E. Larson; Chaolong Wang; Daniel C. Koboldt; Yuri V. Sergeev; Robert S. Fulton; Lucinda Fulton; Catrina C. Fronick; Kari Branham; Jennifer L. Bragg-Gresham; Goo Jun; Youna Hu; Hyun Min Kang; Dajiang J. Liu; Mohammad Othman; Matthew Brooks; Rinki Ratnapriya; Alexis Boleda; Felix Grassmann; Claudia N. von Strachwitz; Lana M. Olson; Gabriëlle H.S. Buitendijk; Albert Hofman; Cornelia M. van Duijn; Valentina Cipriani; Anthony T. Moore; Humma Shahid; Yingda Jiang; Yvette P. Conley; Denise J. Morgan

Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome-sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry-matched controls identified 2 large-effect rare variants: previously described p.Arg1210Cys encoded in the CFH gene (case frequency (fcase) = 0.51%; control frequency (fcontrol) = 0.02%; odds ratio (OR) = 23.11) and newly identified p.Lys155Gln encoded in the C3 gene (fcase = 1.06%; fcontrol = 0.39%; OR = 2.68). The variants suggest decreased inhibition of C3 by complement factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.


Ophthalmology | 2015

Increasing Prevalence of Myopia in Europe and the Impact of Education

Katie M. Williams; Geir Bertelsen; Phillippa M. Cumberland; Christian Wolfram; Virginie J. M. Verhoeven; Eleftherios Anastasopoulos; Gabriëlle H.S. Buitendijk; Audrey Cougnard-Grégoire; Catherine Creuzot-Garcher; Maja G. Erke; Ruth E. Hogg; René Höhn; Pirro G. Hysi; Anthony P. Khawaja; Jean-François Korobelnik; Janina S. Ried; Johannes R. Vingerling; Alain M. Bron; Jean-François Dartigues; Astrid E. Fletcher; Albert Hofman; Robert W. A. M. Kuijpers; Robert Luben; Konrad Oxele; Fotis Topouzis; Therese von Hanno; Alireza Mirshahi; Paul J. Foster; Cornelia M. van Duijn; Norbert Pfeiffer

Purpose To investigate whether myopia is becoming more common across Europe and explore whether increasing education levels, an important environmental risk factor for myopia, might explain any temporal trend. Design Meta-analysis of population-based, cross-sectional studies from the European Eye Epidemiology (E3) Consortium. Participants The E3 Consortium is a collaborative network of epidemiological studies of common eye diseases in adults across Europe. Refractive data were available for 61 946 participants from 15 population-based studies performed between 1990 and 2013; participants had a range of median ages from 44 to 78 years. Methods Noncycloplegic refraction, year of birth, and highest educational level achieved were obtained for all participants. Myopia was defined as a mean spherical equivalent ≤−0.75 diopters. A random-effects meta-analysis of age-specific myopia prevalence was performed, with sequential analyses stratified by year of birth and highest level of educational attainment. Main Outcome Measures Variation in age-specific myopia prevalence for differing years of birth and educational level. Results There was a significant cohort effect for increasing myopia prevalence across more recent birth decades; age-standardized myopia prevalence increased from 17.8% (95% confidence interval [CI], 17.6–18.1) to 23.5% (95% CI, 23.2–23.7) in those born between 1910 and 1939 compared with 1940 and 1979 (P = 0.03). Education was significantly associated with myopia; for those completing primary, secondary, and higher education, the age-standardized prevalences were 25.4% (CI, 25.0–25.8), 29.1% (CI, 28.8–29.5), and 36.6% (CI, 36.1–37.2), respectively. Although more recent birth cohorts were more educated, this did not fully explain the cohort effect. Compared with the reference risk of participants born in the 1920s with only primary education, higher education or being born in the 1960s doubled the myopia prevalence ratio–2.43 (CI, 1.26–4.17) and 2.62 (CI, 1.31–5.00), respectively—whereas individuals born in the 1960s and completing higher education had approximately 4 times the reference risk: a prevalence ratio of 3.76 (CI, 2.21–6.57). Conclusions Myopia is becoming more common in Europe; although education levels have increased and are associated with myopia, higher education seems to be an additive rather than explanatory factor. Increasing levels of myopia carry significant clinical and economic implications, with more people at risk of the sight-threatening complications associated with high myopia.


PLOS ONE | 2013

Insights into the Genetic Architecture of Early Stage Age-Related Macular Degeneration: A Genome-Wide Association Study Meta-Analysis

Elizabeth G. Holliday; Albert V. Smith; Belinda K. Cornes; Gabriëlle H.S. Buitendijk; Richard Jensen; Xueling Sim; Thor Aspelund; Tin Aung; Paul N. Baird; Eric Boerwinkle; Ching-Yu Cheng; Cornelia M. van Duijn; Gudny Eiriksdottir; Vilmundur Gudnason; Tamara B. Harris; Alex W. Hewitt; Michael Inouye; Fridbert Jonasson; Barbara E. K. Klein; Lenore J. Launer; Xiaohui Li; Gerald Liew; Thomas Lumley; Patrick McElduff; Barbara McKnight; Paul Mitchell; Bruce M. Psaty; Elena Rochtchina; Jerome I. Rotter; Rodney J. Scott

Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10−31) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10−24) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10−6) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10−6) and upstream of GLI2 (rs6721654; P = 6.5×10−6), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10−6), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.


The Journal of Neuroscience | 2011

βCaMKII Plays a Nonenzymatic Role in Hippocampal Synaptic Plasticity and Learning by Targeting αCaMKII to Synapses

Nils Z. Borgesius; Geeske M. van Woerden; Gabriëlle H.S. Buitendijk; Nanda Keijzer; Dick Jaarsma; Casper C. Hoogenraad; Ype Elgersma

The calcium/calmodulin-dependent kinase type II (CaMKII) holoenzyme of the forebrain predominantly consists of heteromeric complexes of the αCaMKII and βCaMKII isoforms. Yet, in contrast to αCaMKII, the role of βCaMKII in hippocampal synaptic plasticity and learning has not been investigated. Here, we compare two targeted Camk2b mouse mutants to study the role of βCaMKII in hippocampal function. Using a Camk2b−/− mutant, in which βCaMKII is absent, we show that both hippocampal-dependent learning and Schaffer collateral–CA1 long-term potentiation (LTP) are highly dependent upon the presence of βCaMKII. We further show that βCaMKII is required for proper targeting of αCaMKII to the synapse, indicating that βCaMKII regulates the distribution of αCaMKII between the synaptic pool and the adjacent dendritic shaft. In contrast, localization of αCaMKII, hippocampal synaptic plasticity and learning were unaffected in the Camk2bA303R mutant, in which the calcium/calmodulin-dependent activation of βCaMKII is prevented, while the F-actin binding and bundling property is preserved. This indicates that the calcium/calmodulin-dependent kinase activity of βCaMKII is fully dispensable for hippocampal learning, LTP, and targeting of αCaMKII, but implies a critical role for the F-actin binding and bundling properties of βCaMKII in synaptic function. Together, our data provide compelling support for a model of CaMKII function in which αCaMKII and βCaMKII act in concert, but with distinct functions, to regulate hippocampal synaptic plasticity and learning.


Ophthalmology | 2012

Heritability and Genome-Wide Association Study to Assess Genetic Differences between Advanced Age-Related Macular Degeneration Subtypes

Lucia Sobrin; Stephan Ripke; Yi Yu; Jesen Fagerness; Tushar Bhangale; Perciliz L. Tan; E. Souied; Gabriëlle H.S. Buitendijk; Joanna E. Merriam; Andrea J. Richardson; Soumya Raychaudhuri; Robyn Reynolds; Kimberly A. Chin; Aaron Y. Lee; Nicolas Leveziel; Donald J. Zack; Peter A. Campochiaro; R. Theodore Smith; Gaetano R. Barile; Ruth E. Hogg; Usha Chakravarthy; Timothy W. Behrens; André G. Uitterlinden; Cornelia M. van Duijn; Johannes R. Vingerling; Milam A. Brantley; Paul N. Baird; Caroline C. W. Klaver; Rando Allikmets; Nicholas Katsanis

PURPOSE To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes. DESIGN Sibling correlation study and genome-wide association study (GWAS). PARTICIPANTS For the sibling correlation study, 209 sibling pairs with advanced AMD were included. For the GWAS, 2594 participants with advanced AMD subtypes and 4134 controls were included. Replication cohorts included 5383 advanced AMD participants and 15 240 controls. METHODS Participants had the AMD grade assigned based on fundus photography, examination, or both. To determine heritability of advanced AMD subtypes, a sibling correlation study was performed. For the GWAS, genome-wide genotyping was conducted and 6 036 699 single nucleotide polymorphisms (SNPs) were imputed. Then, the SNPs were analyzed with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P = 4.2 × 10(-5)), meaning that in siblings of probands with CNV or GA, the same advanced subtype is more likely to develop. In the analysis comparing participants with CNV to those with GA, a statistically significant association was observed at the ARMS2/HTRA1 locus (rs10490924; odds ratio [OR], 1.47; P = 4.3 × 10(-9)), which was confirmed in the replication samples (OR, 1.38; P = 7.4 × 10(-14) for combined discovery and replication analysis). CONCLUSIONS Whether CNV versus GA develops in a patient with AMD is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes, but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations that differ for advanced AMD subtypes and deserve follow-up in additional studies.


Ophthalmology | 2013

Prediction of age-related macular degeneration in the general population: the Three Continent AMD Consortium.

Gabriëlle H.S. Buitendijk; Elena Rochtchina; Chelsea E. Myers; Cornelia M. van Duijn; Kristine E. Lee; Barbara E. K. Klein; Stacy M. Meuer; Paulus T. V. M. de Jong; Elizabeth G. Holliday; Ava Grace Tan; André G. Uitterlinden; Theru S. Sivakumaran; John Attia; Albert Hofman; Paul Mitchell; Johannes R. Vingerling; Sudha K. Iyengar; A. Cecile J. W. Janssens; Jie Jin Wang; Ronald Klein; Caroline C. W. Klaver

PURPOSE Prediction models for age-related macular degeneration (AMD) based on case-control studies have a tendency to overestimate risks. The aim of this study is to develop a prediction model for late AMD based on data from population-based studies. DESIGN Three population-based studies: the Rotterdam Study (RS), the Beaver Dam Eye Study (BDES), and the Blue Mountains Eye Study (BMES) from the Three Continent AMD Consortium (3CC). PARTICIPANTS People (n = 10,106) with gradable fundus photographs, genotype data, and follow-up data without late AMD at baseline. METHODS Features of AMD were graded on fundus photographs using the 3CC AMD severity scale. Associations with known genetic and environmental AMD risk factors were tested using Cox proportional hazard analysis. In the RS, the prediction of AMD was estimated for multivariate models by area under receiver operating characteristic curves (AUCs). The best model was validated in the BDES and BMES, and associations of variables were re-estimated in the pooled data set. Beta coefficients were used to construct a risk score, and risk of incident late AMD was calculated using Cox proportional hazard analysis. Cumulative incident risks were estimated using Kaplan-Meier product-limit analysis. MAIN OUTCOME MEASURES Incident late AMD determined per visit during a median follow-up period of 11.1 years with a total of 4 to 5 visits. RESULTS Overall, 363 participants developed incident late AMD, 3378 participants developed early AMD, and 6365 participants remained free of any AMD. The highest AUC was achieved with a model including age, sex, 26 single nucleotide polymorphisms in AMD risk genes, smoking, body mass index, and baseline AMD phenotype. The AUC of this model was 0.88 in the RS, 0.85 in the BDES and BMES at validation, and 0.87 in the pooled analysis. Individuals with low-risk scores had a hazard ratio (HR) of 0.02 (95% confidence interval [CI], 0.01-0.04) to develop late AMD, and individuals with high-risk scores had an HR of 22.0 (95% CI, 15.2-31.8). Cumulative risk of incident late AMD ranged from virtually 0 to more than 65% for those with the highest risk scores. CONCLUSIONS Our prediction model is robust and distinguishes well between those who will develop late AMD and those who will not. Estimated risks were lower in these population-based studies than in previous case-control studies.


Ophthalmology | 2014

Genetic Susceptibility, Dietary Antioxidants, and Long-Term Incidence of Age-Related Macular Degeneration in Two Populations

Jie Jin Wang; Gabriëlle H.S. Buitendijk; Elena Rochtchina; Kristine E. Lee; Barbara E. K. Klein; Cornelia M. van Duijn; Victoria M. Flood; Stacy M. Meuer; John Attia; Chelsea E. Myers; Elizabeth G. Holliday; Ava Grace Tan; Wayne Smith; Sudha K. Iyengar; Paulus T. V. M. de Jong; Albert Hofman; Johannes R. Vingerling; Paul Mitchell; Ronald Klein; Caroline C. W. Klaver

OBJECTIVE To examine effect modification between genetic susceptibility to age-related macular degeneration (AMD) and dietary antioxidant or fish consumption on AMD risk. DESIGN Pooled data analysis of population-based cohorts. PARTICIPANTS Participants from the Blue Mountains Eye Study (BMES) and Rotterdam Study (RS). METHODS Dietary intakes of antioxidants (lutein/zeaxanthin [LZ], β-carotene, and vitamin C), long-chain omega-3 polyunsaturated fatty acids, and zinc were estimated from food frequency questionnaires. The AMD genetic risk was classified according to the number of risk alleles of CFH (rs1061170) or ARMS2 (rs10490924) as low (no or 1 risk allele) or high (≥ 2 risk alleles). Interactions between dietary intake and genetic risk levels were assessed. Associations between dietary intake and AMD risk were assessed comparing the highest with the 2 lower intake tertiles by genetic risk subgroups using discrete logistic regression, conducted in each study separately and then using pooled data. Participants without AMD lesions at any visit were controls. We adjusted for age and sex in analyses of each cohort sample and for smoking status and study site in pooled-data analyses. MAIN OUTCOME MEASURES All 15-year incident late AMD cases were confirmed by chief investigators of the Beaver Dam Eye Study, BMES, and RS. Intergrader reproducibility was assessed in an early AMD subsample, with 86.4% agreement between BMES and RS graders, allowing for a 1-step difference on a 5-step AMD severity scale. RESULTS In pooled data analyses, we found significant interaction between AMD genetic risk status and LZ intake (P=0.0009) but nonsignificant interactions between genetic risk status and weekly fish consumption (P=0.05) for risk of any AMD. Among participants with high genetic risk, the highest intake tertile of LZ was associated with a >20% reduced risk of early AMD, and weekly consumption of fish was associated with a 40% reduced risk of late AMD. No similar association was evident among participants with low genetic risk. No interaction was detected between β-carotene or vitamin C and genetic risk status. CONCLUSIONS Protection against AMD from greater LZ and fish consumption in persons with high genetic risk based on 2 major AMD genes raises the possibility of personalized preventive interventions.

Collaboration


Dive into the Gabriëlle H.S. Buitendijk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henriet Springelkamp

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Paulus T. V. M. de Jong

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar

Ronald Klein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Jin Wang

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge