Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabrielle L. Goldberg is active.

Publication


Featured researches published by Gabrielle L. Goldberg.


Journal of Immunology | 2005

Activation of thymic regeneration in mice and humans following androgen blockade

Jayne Suzanne Sutherland; Gabrielle L. Goldberg; Maree V. Hammett; Adam P. Uldrich; Stuart P. Berzins; Tracy Shu Ping Heng; Bruce R. Blazar; Jeremy Millar; Mark Malin; Ann Patricia Chidgey; Richard L. Boyd

The thymus undergoes age-related atrophy, coincident with increased circulating sex steroids from puberty. The impact of thymic atrophy is most profound in clinical conditions that cause a severe loss in peripheral T cells with the ability to regenerate adequate numbers of naive CD4+ T cells indirectly correlating with patient age. The present study demonstrates that androgen ablation results in the complete regeneration of the aged male mouse thymus, restoration of peripheral T cell phenotype and function and enhanced thymus regeneration following bone marrow transplantation. Importantly, this technique is also applicable to humans, with analysis of elderly males undergoing sex steroid ablation therapy for prostatic carcinoma, demonstrating an increase in circulating T cell numbers, particularly naive (TREC+) T cells. Collectively these studies represent a fundamentally new approach to treating immunodeficiency states in humans.


Trends in Immunology | 2009

Thymic involution and immune reconstitution

Heather E. Lynch; Gabrielle L. Goldberg; Ann Patricia Chidgey; Marcel R.M. van den Brink; Richard L. Boyd; Gregory D. Sempowski

Chronic thymus involution associated with aging results in less efficient T-cell development and decreased emigration of naïve T cells to the periphery. Thymic decline in the aged is linked to increased morbidity and mortality in a wide range of clinical settings. Negative consequences of these effects on global health make it of paramount importance to understand the mechanisms driving thymic involution and homeostatic processes across the lifespan. There is growing evidence that thymus tissue is plastic and that the involution process might be therapeutically halted or reversed. We present here progress on the exploitation of thymosuppressive and thymostimulatory pathways using factors such as keratinocyte growth factor, interleukin 7 or sex steroid ablation for therapeutic thymus restoration and peripheral immune reconstitution in adults.


Blood | 2009

IL-17 contributes to CD4-mediated graft-versus-host disease

Lucy W. Kappel; Gabrielle L. Goldberg; Christopher King; David Suh; Odette M. Smith; Cassandra Ligh; Amanda M. Holland; Jeremy Grubin; Nicholas M. Mark; Chen Liu; Yoichiro Iwakura; Glenn Heller; Marcel R.M. van den Brink

CD4(+) interleukin-17 (IL-17)(+) T cells (Th17 cells) have been implicated in allograft rejection of solid organs and several autoimmune diseases. However, the functional role of Th17 cells in the development of acute graft-versus-host disease (GVHD) has not been well-characterized. We detected significant numbers of alloreactive CD4(+) donor T cells expressing IL-17, IL-17F, or IL-22 in the lymphoid organs of recipients of an allogeneic bone marrow transplant. We found no differences in GVHD mortality or graft-versus-tumor (GVT) activity between wild type (WT) and IL-17(-/-) T-cell recipients. However, upon transfer of murine IL-17(-/-) CD4(+) T cells in an allogeneic BMT model, GVHD development was significantly delayed behind recipients of WT CD4(+) T cells, yet overall GVHD mortality was unaffected. Moreover, recipients of IL-17(-/-) CD4(+) T cells had significantly fewer Th1 cells during the early stages of GVHD. Furthermore, we observed a decrease in the number of IFN-gamma-secreting macrophages and granulocytes and decreased production of proinflammatory cytokines (interferon [IFN]-gamma, IL-4, and IL-6) in recipients of IL-17(-/-) CD4(+) T cells. We conclude that IL-17 is dispensable for GVHD and GVT activity by whole T cells, but contributes to the early development of CD4-mediated GVHD by promoting production of proinflammatory cytokines.


Journal of Immunology | 2005

Effects of Castration on Thymocyte Development in Two Different Models of Thymic Involution

Tracy Shu Ping Heng; Gabrielle L. Goldberg; Daniel Gray; Jayne Suzanne Sutherland; Ann Patricia Chidgey; Richard L. Boyd

Age-associated thymic involution is accompanied by decreased thymic output. This adversely affects general immune competence and T cell recovery following cytoreductive treatments such as chemotherapy. A causal link between increasing sex steroids and age-related thymic atrophy is well established. Although castration has been demonstrated to regenerate the atrophied thymus, little is known about how this is initiated or the kinetics of thymocyte regeneration. The present study shows that although castration impacts globally across thymocyte development in middle-aged mice, the regenerative effects are initiated in the immature triple-negative compartment and early T lineage progenitors (ETP). Specifically, there was a reduction in number of ETP with age, which was restored following castration. There was, however, no change in ETP reconstitution potential in ETP at this age or following castration. Furthermore, in a chemotherapy-induced model of thymic involution, we demonstrate castration enhances intrathymic proliferation and promotes differentiation through the triple-negative program. Clinically, reversible sex steroid ablation is achieved hormonally, and thus presents a means of ameliorating immune inadequacies, for example, following chemotherapy for bone marrow transplantation. By improving our understanding of the kinetics of thymic recovery, this study will allow more appropriate timing of therapy to achieve maximal reconstitution, especially in the elderly.


Transplantation | 2005

Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation.

Gabrielle L. Goldberg; Jayne Suzanne Sutherland; Maree V. Hammet; Morag K. Milton; Tracy Shu Ping Heng; Ann Patricia Chidgey; Richard L. Boyd

Background. Autologous hematopoietic stem cell transplantation (auto-HSCT) patients experience long-term immunosuppression, which increases susceptibility to infection and relapse rates due to minimal residual disease (MRD). Sex steroid (SS) ablation is known to reverse age-related thymic atrophy and decline in B-cell production Methods. This study used a congenic HSCT mouse model to analyze the effects of SS ablation (through surgical castration) on immune reconstitution and growth factor production following auto-HSCT. Bone marrow (BM) and thymic stromal cell (TSCs) populations were analyzed using RT-PCR and were tested for the production of growth factors previously implicated in immune reconstitution or age-relate immune degeneration Results. Castration increased bone marrow (BM), thymic, and splenic cellularity following auto-HSCT. HSC number and common lymphoid precursor (CLP) frequency and number were increased in castrated mice. B cell precursor numbers were also significantly increased in the BM of these mice. Triple negative, double positive and single positive thymocytes were increased following HSCT and castration, as were thymic dendritic cells and natural killer T (NKT) cells. This enhanced lymphoid reconstitution of the primary immune organs leads to a significant increase in splenic T and B cells 42 days after HSCT. The molecular mechanisms behind the enhanced reconstitution were also studied. TGF-&bgr;1 was decreased in castrated mice compared to sham-castrated controls in TSCs and BM cells. TSC production of IL-6 was also decreased in castrated mice Conclusions. These data suggest that sex steroid ablation significantly enhances lymphopoiesis following auto-HSCT providing a new strategy for posttransplant immune reconstitution.


Journal of Immunology | 2007

Enhanced Immune Reconstitution by Sex Steroid Ablation following Allogeneic Hemopoietic Stem Cell Transplantation

Gabrielle L. Goldberg; Onder Alpdogan; Stephanie J. Muriglan; Maree V. Hammett; Morag K. Milton; Jeffrey M. Eng; Vanessa M. Hubbard; Adam A. Kochman; Lucy M. Willis; Andrew S. Greenberg; Kartono H. Tjoe; Jayne Suzanne Sutherland; Ann Patricia Chidgey; Marcel R.M. van den Brink; Richard L. Boyd

Delayed immune reconstitution in adult recipients of allogeneic hemopoietic stem cell transplantations (HSCT) is related to age-induced thymic atrophy. Overcoming this paucity of T cell function is a major goal of clinical research but in the context of allogeneic transplants, any strategy must not exacerbate graft-vs-host disease (GVHD) yet ideally retain graft-vs-tumor (GVT) effects. We have shown sex steroid ablation reverses thymic atrophy and enhances T cell recovery in aged animals and in congenic bone marrow (BM) transplant but the latter does not have the complications of allogeneic T cell reactivity. We have examined whether sex steroid ablation promoted hemopoietic and T cell recovery following allogeneic HSCT and whether this benefit was negated by enhanced GVHD. BM and thymic cell numbers were significantly increased at 14 and 28 days after HSCT in castrated mice compared with sham-castrated controls. In the thymus, the numbers of donor-derived thymocytes and dendritic cells were significantly increased after HSCT and castration; donor-derived BM precursors and developing B cells were also significantly increased. Importantly, despite restoring T cell function, sex steroid inhibition did not exacerbate the development of GVHD or ameliorate GVT activity. Finally, IL-7 treatment in combination with castration had an additive effect on thymic cellularity following HSCT. These results indicate that sex steroid ablation can profoundly enhance thymic and hemopoietic recovery following allogeneic HSCT without increasing GVHD and maintaining GVT.


Blood | 2011

Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL

Alan M. Hanash; Lucy W. Kappel; Nury Yim; Rebecca A. Nejat; Gabrielle L. Goldberg; Odette M. Smith; Uttam K. Rao; Lindsay Dykstra; Il-Kang Na; Amanda M. Holland; Jarrod A. Dudakov; Chen Liu; George F. Murphy; Warren J. Leonard; Glenn Heller; Marcel R.M. van den Brink

IL-21 is a proinflammatory cytokine produced by Th17 cells. Abrogation of IL-21 signaling has recently been shown to reduce GVHD while retaining graft-versus-leukemia/lymphoma (GVL) responses. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL remain incompletely understood. In a murine MHC-mismatched BM transplantation model, we observed that IL-21 receptor knockout (IL-21R KO) donor T cells mediate decreased systemic and gastrointestinal GVHD in recipients of a transplant. This reduction in GVHD was associated with expansion of transplanted donor regulatory T cells and with tissue-specific modulation of Th-cell function. IL-21R KO and wild-type donor T cells showed equivalent alloactivation, but IL-21R KO T cells showed decreased infiltration and inflammatory cytokine production within the mesenteric lymph nodes. However, Th-cell cytokine production was maintained peripherally, and IL-21R KO T cells mediated equivalent immunity against A20 and P815 hematopoietic tumors. In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T-cell function and GVL capacity are retained. IL-21 is thus an exciting target for therapeutic intervention and improvement of clinical transplantation outcomes.


Journal of Immunology | 2009

Luteinizing Hormone-Releasing Hormone Enhances T Cell Recovery following Allogeneic Bone Marrow Transplantation

Gabrielle L. Goldberg; Christopher King; Rebecca A. Nejat; David Suh; Odette M. Smith; Jamison C. Bretz; Robert M. Samstein; Jarrod A. Dudakov; Ann Patricia Chidgey; Selina Chen-Kiang; Richard L. Boyd; Marcel R.M. van den Brink

Posttransplant immunodeficiency, specifically a lack of T cell reconstitution, is a major complication of allogeneic bone marrow transplantation. This immunosuppression results in an increase in morbidity and mortality from infections and very likely contributes to relapse. In this study, we demonstrate that sex steroid ablation using leuprolide acetate, a luteinizing hormone-releasing hormone agonist (LHRHa), increases the number of lymphoid and myeloid progenitor cells in the bone marrow and developing thymocytes in the thymus. Although few differences are observed in the peripheral myeloid compartments, the enhanced thymic reconstitution following LHRHa treatment and allogeneic bone marrow transplantation leads to enhanced peripheral T cell recovery, predominantly in the naive T cell compartment. This results in an increase in T cell function in vivo and in vitro. Graft-versus-host-disease is not exacerbated by LHRHa treatment and graft-versus-tumor activity is maintained. Because LHRHa allows for reversible (and temporary) sex steroid ablation, has a strong safety profile, and has been clinically approved for diseases such as prostate and breast cancer, this drug treatment represents a novel therapeutic approach to reversal of thymic atrophy and enhancement of immunity following immunosuppression.


Journal of Clinical Investigation | 2010

The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease

Il-Kang Na; Sydney X. Lu; Nury Yim; Gabrielle L. Goldberg; Jennifer J. Tsai; Uttam K. Rao; Odette M. Smith; Christopher King; David Suh; Daniel Hirschhorn-Cymerman; Lia Palomba; Olaf Penack; Amanda M. Holland; Robert R. Jenq; Arnab Ghosh; Hien Tran; Taha Merghoub; Chen Liu; Gregory D. Sempowski; Melissa S. Ventevogel; Nicole Beauchemin; Marcel R.M. van den Brink

Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.


Journal of Immunology | 2009

Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice.

Jarrod A. Dudakov; Gabrielle L. Goldberg; Jessica Jane Reiseger; Katerina Vlahos; Ann Patricia Chidgey; Richard L. Boyd

Cytotoxic antineoplastic therapy is widely used in the clinic as a treatment for malignant diseases. The treatment itself, however, leads to long-term depletion of the adaptive immune system, which is more pronounced in older patients, predominantly due to thymic atrophy. We and others have previously shown that withdrawal of sex steroids is able to regenerate the aged thymus and enhance recovery from autologous and allogeneic hematopoietic stem cell transplant. In this study we have examined the effects of sex steroid ablation (SSA) on the recovery of lymphopoiesis in the bone marrow (BM) and thymus following treatment with the chemotherapeutic agent cyclophosphamide (Cy) in middle-aged and old mice. Furthermore, we have also examined the impact of this regeneration on peripheral immunity. SSA enhanced the recovery of BM resident hematopoietic stem cells and lymphoid progenitors and promoted lymphopoiesis. Interestingly, Cy alone caused a profound increase in the recently described common lymphoid progenitor 2 (CLP-2) population in the BM. In the thymus, SSA caused a profound increase in cellularity as well as all intrathymic T-lineage progenitors including early T-lineage progenitors (ETPs) and non-canonical T cell progenitors such as the CLP-2. We also found that these transferred into numerical increases in the periphery with enhanced B and T cell numbers. Furthermore, these lymphocytes were found to have an enhanced functional capacity with no perturbation of the TCR repertoire. Taken together, these results provide the basis for the use of SSA in the clinic to enhance treatment outcomes from cytotoxic antineoplastic therapy.

Collaboration


Dive into the Gabrielle L. Goldberg's collaboration.

Top Co-Authors

Avatar

Marcel R.M. van den Brink

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Odette M. Smith

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Suh

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher King

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amanda M. Holland

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sydney X. Lu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert R. Jenq

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jarrod A. Dudakov

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge