Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabrielle Rizzuto is active.

Publication


Featured researches published by Gabrielle Rizzuto.


Journal of Experimental Medicine | 2004

Concomitant Tumor Immunity to a Poorly Immunogenic Melanoma Is Prevented by Regulatory T Cells

Mary Jo Turk; José A. Guevara-Patiño; Gabrielle Rizzuto; Manuel E. Engelhorn; Alan N. Houghton

Concomitant tumor immunity describes immune responses in a host with a progressive tumor that rejects the same tumor at a remote site. In this work, concomitant tumor immunity was investigated in mice bearing poorly immunogenic B16 melanoma. Progression of B16 tumors did not spontaneously elicit concomitant immunity. However, depletion of CD4+ T cells in tumor-bearing mice resulted in CD8+ T cell–mediated rejection of challenge tumors given on day 6. Concomitant immunity was also elicited by treatment with cyclophosphamide or DTA-1 monoclonal antibody against the glucocorticoid-induced tumor necrosis factor receptor. Immunity elicited by B16 melanoma cross-reacted with a distinct syngeneic melanoma, but not with nonmelanoma tumors. Furthermore, CD8+ T cells from mice with concomitant immunity specifically responded to major histocompatibility complex class I–restricted epitopes of two melanocyte differentiation antigens. RAG1 −/− mice adoptively transferred with CD8+ and CD4+ T cells lacking the CD4+CD25+ compartment mounted robust concomitant immunity, which was suppressed by readdition of CD4+CD25+ cells. Naturally occurring CD4+CD25+ T cells efficiently suppressed concomitant immunity mediated by previously activated CD8+ T cells, demonstrating that precursor regulatory T cells in naive hosts give rise to effective suppressors. These results show that regulatory T cells are the major regulators of concomitant tumor immunity against this weakly immunogenic tumor.


Cancer Research | 2006

Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity

Adam D. Cohen; Adi Diab; Miguel Angel Perales; Jedd D. Wolchok; Gabrielle Rizzuto; Taha Merghoub; Deonka Huggins; Cailian Liu; Mary Jo Turk; Nicholas P. Restifo; Shimon Sakaguchi; Alan N. Houghton

Immunization of mice with plasmids encoding xenogeneic orthologues of tumor differentiation antigens can break immune ignorance and tolerance to self and induce protective tumor immunity. We sought to improve on this strategy by combining xenogeneic DNA vaccination with an agonist anti-glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) monoclonal antibody (mAb), DTA-1, which has been shown previously both to costimulate activated effector CD4(+) and CD8(+) T cells and to inhibit the suppressive activity of CD4(+)CD25(+) regulatory T cells. We found that ligation of GITR with DTA-1 just before the second, but not the first, of 3 weekly DNA immunizations enhanced primary CD8(+) T-cell responses against the melanoma differentiation antigens gp100 and tyrosinase-related protein 2/dopachrome tautomerase and increased protection from a lethal challenge with B16 melanoma. This improved tumor immunity was associated with a modest increase in focal autoimmunity, manifested as autoimmune hypopigmentation. DTA-1 administration on this schedule also led to prolonged persistence of the antigen-specific CD8(+) T cells as well as to an enhanced recall CD8(+) T-cell response to a booster vaccination given 4 weeks after the primary immunization series. Giving the anti-GITR mAb both during primary immunization and at the time of booster vaccination increased the recall response even further. Finally, this effect on vaccine-induced CD8(+) T-cell responses was partially independent of CD4(+) T cells (both helper and regulatory), consistent with a direct costimulatory effect on the effector CD8(+) cells themselves.


Journal of Experimental Medicine | 2009

OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis

Daniel Hirschhorn-Cymerman; Gabrielle Rizzuto; Taha Merghoub; Adam D. Cohen; Francesca Avogadri; Alexander M. Lesokhin; Andrew D. Weinberg; Jedd D. Wolchok; Alan N. Houghton

Expansion and recruitment of CD4+ Foxp3+ regulatory T (T reg) cells are mechanisms used by growing tumors to evade immune elimination. In addition to expansion of effector T cells, successful therapeutic interventions may require reduction of T reg cells within the tumor microenvironment. We report that the combined use of the alkylating agent cyclophosphamide (CTX) and an agonist antibody targeting the co-stimulatory receptor OX40 (OX86) provides potent antitumor immunity capable of regressing established, poorly immunogenic B16 melanoma tumors. CTX administration resulted in tumor antigen release, which after OX86 treatment significantly enhanced the antitumor T cell response. We demonstrated that T reg cells are an important cellular target of the combination therapy. Paradoxically, the combination therapy led to an expansion of T reg cells in the periphery. In the tumor, however, the combination therapy induced a profound T reg cell depletion that was accompanied by an influx of effector CD8+ T cells leading to a favorable T effector/T reg cell ratio. Closer examination revealed that diminished intratumoral T reg cell levels resulted from hyperactivation and T reg cell–specific apoptosis. Thus, we propose that CTX and OX40 engagement represents a novel and rational chemoimmunotherapy.


PLOS ONE | 2010

Agonist Anti-GITR Monoclonal Antibody Induces Melanoma Tumor Immunity in Mice by Altering Regulatory T Cell Stability and Intra-Tumor Accumulation

Adam D. Cohen; David Schaer; Cailian Liu; Yanyun Li; Daniel Hirschhorn-Cymmerman; Soo Chong Kim; Adi Diab; Gabrielle Rizzuto; Fei Duan; Miguel Angel Perales; Taha Merghoub; Alan N. Houghton; Jedd D. Wolchok

In vivo GITR ligation has previously been shown to augment T-cell-mediated anti-tumor immunity, yet the underlying mechanisms of this activity, particularly its in vivo effects on CD4+ foxp3+ regulatory T cells (Tregs), have not been fully elucidated. In order to translate this immunotherapeutic approach to the clinic it is important gain better understanding of its mechanism(s) of action. Utilizing the agonist anti-GITR monoclonal antibody DTA-1, we found that in vivo GITR ligation modulates regulatory T cells (Tregs) directly during induction of melanoma tumor immunity. As a monotherapy, DTA-1 induced regression of small established B16 melanoma tumors. Although DTA-1 did not alter systemic Treg frequencies nor abrogate the intrinsic suppressive activity of Tregs within the tumor-draining lymph node, intra-tumor Treg accumulation was significantly impaired. This resulted in a greater Teff:Treg ratio and enhanced tumor-specific CD8+ T-cell activity. The decreased intra-tumor Treg accumulation was due both to impaired infiltration, coupled with DTA-1-induced loss of foxp3 expression in intra-tumor Tregs. Histological analysis of B16 tumors grown in Foxp3-GFP mice showed that the majority of GFP+ cells had lost Foxp3 expression. These “unstable” Tregs were absent in IgG-treated tumors and in DTA-1 treated TDLN, demonstrating a tumor-specific effect. Impairment of Treg infiltration was lost if Tregs were GITR−/−, and the protective effects of DTA-1 were reduced in reconstituted RAG1−/− mice if either the Treg or Teff subset were GITR-negative and absent if both were negative. Our results demonstrate that DTA-1 modulates both Teffs and Tregs during effective tumor treatment. The data suggest that DTA-1 prevents intra-tumor Treg accumulation by altering their stability, and as a result of the loss of foxp3 expression, may modify their intra-tumor suppressive capacity. These findings provide further support for the continued development of agonist anti-GITR mAbs as an immunotherapeutic strategy for cancer.


Cancer Research | 2012

Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment.

Alexander M. Lesokhin; Tobias M. Hohl; Shigehisa Kitano; Czrina Cortez; Daniel Hirschhorn-Cymerman; Francesca Avogadri; Gabrielle Rizzuto; John J. Lazarus; Eric G. Pamer; Alan N. Houghton; Taha Merghoub; Jedd D. Wolchok

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of cells that accumulate during tumor formation, facilitate immune escape, and enable tumor progression. MDSCs are important contributors to the development of an immunosuppressive tumor microenvironment that blocks the action of cytotoxic antitumor T effector cells. Heterogeneity in these cells poses a significant barrier to studying the in vivo contributions of individual MDSC subtypes. Herein, we show that granulocyte-macrophage colony stimulating factor, a cytokine critical for the numeric and functional development of MDSC populations, promotes expansion of a monocyte-derived MDSC population characterized by expression of CD11b and the chemokine receptor CCR2. Using a toxin-mediated ablation strategy to target CCR2-expressing cells, we show that these monocytic MDSCs regulate entry of activated CD8 T cells into the tumor site, thereby limiting the efficacy of immunotherapy. Our results argue that therapeutic targeting of monocytic MDSCs would enhance outcomes in immunotherapy.


Nature Medicine | 2006

Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation.

Johannes L. Zakrzewski; Adam A. Kochman; Sydney X. Lu; Theis H. Terwey; Theo D. Kim; Vanessa M. Hubbard; Stephanie J. Muriglan; David Suh; Odette M. Smith; Jeremy Grubin; Neel Patel; Andrew Chow; Javier Cabrera-Perez; Radhika Radhakrishnan; Adi Diab; Miguel Angel Perales; Gabrielle Rizzuto; Ewa Menet; Eric G. Pamer; Glen Heller; Juan Carlos Zúñiga-Pflücker; Onder Alpdogan; Marcel R.M. van den Brink

Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured mouse hematopoietic stem cells (HSCs) in vitro on OP9 mouse stromal cells expressing the Notch-1 ligand Delta-like-1 (OP9-DL1). We infused these cells, together with T-cell–depleted mouse bone marrow or purified HSCs, into lethally irradiated allogeneic recipients and determined their effect on T-cell reconstitution after transplantation. Recipients of OP9-DL1–derived T-cell precursors showed increased thymic cellularity and substantially improved donor T-cell chimerism (versus recipients of bone marrow or HSCs only). OP9-DL1–derived T-cell precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T-cell antigen receptor repertoires, cytokine secretion and proliferative responses to antigen. Administration of OP9-DL1–derived T-cell precursors increased resistance to infection with Listeria monocytogenes and mediated significant graft-versus-tumor (GVT) activity but not graft-versus-host disease (GVHD). We conclude that the adoptive transfer of OP9-DL1–derived T-cell precursors markedly enhances T-cell reconstitution after transplantation, resulting in GVT activity without GVHD.


Journal of Experimental Medicine | 2009

Self-antigen–specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response

Gabrielle Rizzuto; Taha Merghoub; Daniel Hirschhorn-Cymerman; Cailian Liu; Alexander M. Lesokhin; Diana Sahawneh; Hong Zhong; Katherine S. Panageas; Miguel-Angel Perales; Grégoire Altan-Bonnet; Jedd D. Wolchok; Alan N. Houghton

A primary goal of cancer immunotherapy is to improve the naturally occurring, but weak, immune response to tumors. Ineffective responses to cancer vaccines may be caused, in part, by low numbers of self-reactive lymphocytes surviving negative selection. Here, we estimated the frequency of CD8+ T cells recognizing a self-antigen to be <0.0001% (∼1 in 1 million CD8+ T cells), which is so low as to preclude a strong immune response in some mice. Supplementing this repertoire with naive antigen-specific cells increased vaccine-elicited tumor immunity and autoimmunity, but a threshold was reached whereby the transfer of increased numbers of antigen-specific cells impaired functional benefit, most likely because of intraclonal competition in the irradiated host. We show that cells primed at precursor frequencies below this competitive threshold proliferate more, acquire polyfunctionality, and eradicate tumors more effectively. This work demonstrates the functional relevance of CD8+ T cell precursor frequency to tumor immunity and autoimmunity. Transferring optimized numbers of naive tumor-specific T cells, followed by in vivo activation, is a new approach that can be applied to human cancer immunotherapy. Further, precursor frequency as an isolated variable can be exploited to augment efficacy of clinical vaccine strategies designed to activate any antigen-specific CD8+ T cells.


Journal of Clinical Investigation | 2006

Optimization of a self antigen for presentation of multiple epitopes in cancer immunity

José A. Guevara-Patiño; Manuel E. Engelhorn; Mary Jo Turk; Cailian Liu; Fei Duan; Gabrielle Rizzuto; Adam D. Cohen; Taha Merghoub; Jedd D. Wolchok; Alan N. Houghton

T cells recognizing self antigens expressed by cancer cells are prevalent in the immune repertoire. However, activation of these autoreactive T cells is limited by weak signals that are incapable of fully priming naive T cells, creating a state of tolerance or ignorance. Even if T cell activation occurs, immunity can be further restricted by a dominant response directed at only a single epitope. Enhanced antigen presentation of multiple epitopes was investigated as a strategy to overcome these barriers. Specific point mutations that create altered peptide ligands were introduced into the gene encoding a nonimmunogenic tissue self antigen expressed by melanoma, tyrosinase-related protein-1 (Tyrp1). Deficient asparagine-linked glycosylation, which was caused by additional mutations, produced altered protein trafficking and fate that increased antigen processing. Immunization of mice with mutated Tyrp1 DNA elicited cross-reactive CD8(+) T cell responses against multiple nonmutated epitopes of syngeneic Tyrp1 and against melanoma cells. These multi-specific anti-Tyrp1 CD8(+) T cell responses led to rejection of poorly immunogenic melanoma and prolonged survival when immunization was started after tumor challenge. These studies demonstrate how rationally designed DNA vaccines directed against self antigens for enhanced antigen processing and presentation reveal novel self epitopes and elicit multi-specific T cell responses to nonimmunogenic, nonmutated self antigens, enhancing immunity against cancer self antigens.


Blood | 2010

Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs.

Takeshi Nakahara; Hiroshi Uchi; Alexander M. Lesokhin; Francesca Avogadri; Gabrielle Rizzuto; Daniel Hirschhorn-Cymerman; Katherine S. Panageas; Taha Merghoub; Jedd D. Wolchok; Alan N. Houghton

Cyclophosphamide (CTX), a commonly used chemotherapeutic agent can enhance immune responses. The ability of CTX to promote the proliferation of effector T cells and abrogate the function of regulatory T cells (Tregs) has been described. In this study, we examined the effects of CTX treatment on dendritic cell (DC) subsets and the subsequent outcome on the effector and suppressive arms of adaptive immunity. In secondary lymphoid tissues, tissue-derived migratory DCs (migratory DCs), lymphoid tissue-resident DCs (resident DCs), and plasmacytoid DCs (pDCs) are well described. CTX has profound and selective cytotoxic effects on CD8(+) resident DCs, but not skin-derived migratory DCs or pDCs in lymph nodes (LNs) and spleen, causing an imbalance among these DC subsets. CTX treatment increases the potency of DCs in antigen presentation and cytokine secretion, and partially inhibits the suppressor activity of Tregs. Adoptive transfer of CD8(+) DCs can reconstitute this population in regional draining LNs and abrogate the immune-enhancing effects of CTX in vivo. These findings demonstrate that CTX may improve immune responses by preferentially depleting CD8(+) lymphoid-resident DCs, which leads to diminished Treg suppression and enhanced effector T-cell function in vivo.


Infection and Immunity | 2005

Distinct CD4+-T-Cell Responses to Live and Heat-Inactivated Aspergillus fumigatus Conidia

Amariliz Rivera; Heather L. Van Epps; Tobias M. Hohl; Gabrielle Rizzuto; Eric G. Pamer

ABSTRACT Aspergillus fumigatus is an important fungal pathogen that causes invasive pulmonary disease in immunocompromised hosts. Respiratory exposure to A. fumigatus spores also causes allergic bronchopulmonary aspergillosis, a Th2 CD4+-T-cell-mediated disease that accompanies asthma. The microbial factors that influence the differentiation of A. fumigatus-specific CD4+ T lymphocytes into Th1 versus Th2 cells remain incompletely defined. We therefore examined CD4+-T-cell responses of immunologically intact mice to intratracheal challenge with live or heat-inactivated A. fumigatus spores. Live but not heat-inactivated fungal spores resulted in recruitment of gamma interferon (IFN-γ)-producing, fungus-specific CD4+ T cells to lung airways, achieving A. fumigatus-specific frequencies exceeding 5% of total CD4+ T cells. While heat-inactivated spores did not induce detectable levels of IFN-γ-producing, A. fumigatus-specific CD4+ T cells in the airways, they did prime CD4+ T-cell responses in draining lymph nodes that produced greater amounts of interleukin 4 (IL-4) and IL-13 than T cells responding to live conidia. While immunization with live fungal spores induced antibody responses, we found a marked decrease in isotype-switched, A. fumigatus-specific antibodies in sera of mice following immunization with heat-inactivated spores. Our studies demonstrate that robust Th1 T-cell and humoral responses are restricted to challenge with fungal spores that have the potential to germinate and cause invasive infection. How the adaptive immune system distinguishes between metabolically active and inactive fungal spores remains an important question.

Collaboration


Dive into the Gabrielle Rizzuto's collaboration.

Top Co-Authors

Avatar

Jedd D. Wolchok

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alan N. Houghton

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Taha Merghoub

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cailian Liu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Adam D. Cohen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi Diab

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Hirschhorn-Cymerman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Suh

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge