Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gael Lecellier is active.

Publication


Featured researches published by Gael Lecellier.


Molecular Genetics and Genomics | 1993

The mat-- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs

Robert Debuchy; Sylvie Arnaise; Gael Lecellier

In the filamentous fungus Podospora anserina, mating type is specified by a single locus with two alternate alleles, termed mat- and mat+. A previous study has shown that the mat+ sequence consists of 3.7 kb and contains a single gene relevant to the sexual cycle. This gene, called FPR1, encodes a protein with a HMG DNA-binding domain and is required for fertilization and for the development of the fertilized fruiting body. The mat-sequence, which is 4.7 kb in length, displays a more complex structure. We present here the characterization of two genes, called SMR1 and SMR2, which are present in the mat- allele along with the FMR1 gene. FMR1, whose role in the sexual cycle has been already partially described, encodes a protein with an α1-domain and was shown to control fertilization. We demonstrate that these three genes are required for the developmental events that occur in the female organ after fertilization. The additional role of FMR1 requires a region of unknown function that is distinct from the α1-domain. SMR1 encodes a protein with a putative acidic/hydrophobic α-helix, which has been proposed to be a feature common to transcriptional activators. The protein sequence deduced from SMR2 contains an HMG motif suggesting that it is a transcription factor.


Journal of Clinical Microbiology | 2007

Comparison of Microsatellite Length Polymorphism and Multilocus Sequence Typing for DNA-Based Typing of Candida albicans

Dea Garcia-Hermoso; Odile Cabaret; Gael Lecellier; Marie Desnos-Ollivier; Damien Hoinard; Dorothée Raoux; Jean Marc Costa; Françoise Dromer; Stéphane Bretagne

ABSTRACT For genotyping Candida albicans isolates, two PCR-based methods have recently emerged: multilocus sequence typing (MLST), based on the sequence of selected genes, and microsatellite length polymorphism (MLP), based on the length of PCR products containing variable numbers of short DNA repeats. To compare the two methods in their abilities to differentiate and group C. albicans isolates, we selected 50 independent isolates collected at the National Reference Center for Mycoses and Antifungals. MLST typing was performed using sequencing of seven loci as described at http://test1.mlst.net . The MLP method consisted of a single multiplex PCR testing three different loci. Dendrograms were constructed by the unweighted pair group cluster method with Euclidean metric for both methods. The correlation between the distance matrices was performed with a Mantel test tested with 1,000 random permutations. The sensitivity and specificity of the MLP typing system were determined after allocating MLST groups for the greater number of isolates of each distinct MLP group. The discriminatory power index was >0.99, and the distances between the isolates were highly correlated with both systems. The Mantel coefficient and the Pearson product-moment correlation coefficient were 35,699 and 0.32, respectively (P ≤ 1.2 × 10−6). Using MLP, the average specificity and sensitivity of clustering compared to MLST were 83% and 73%, respectively, when the singletons were excluded. The two methods are similarly discriminatory and can be interchangeable depending on the objectives. MLP is less expensive and faster than MLST. However, MLST is currently more accurate and additional standardization is needed for MLP.


Journal of Microbiological Methods | 2010

Genotyping of Candida albicans using length fragment and high-resolution melting analyses together with minisequencing of a polymorphic microsatellite locus.

Jean-Marc Costa; Dea Garcia-Hermoso; Martine Olivi; Odile Cabaret; Cécile Farrugia; Gael Lecellier; Françoise Dromer; Stéphane Bretagne

Microsatellite length polymorphism (MLP) typing is a PCR-based method used for genotyping of the diploid yeast Candida albicans. However, MLP is subject to homoplasia which can hamper the accuracy of the results. We combined fragment length analysis, high-resolution DNA melting (HRM) analysis, and SNaPshot minisequencing after a single amplification of the CDC3 locus to study 95 epidemiologically independent C. albicans isolates. HRM analysis for a given electrophoretic group led to a maximum of three different curves due to the presence of a SNP upstream of the tandem repeat which could be characterized using the SNaPshot assay. The combination of the three methods had a discriminatory index of 0.88 in complete congruence with previous MLP typing (Mantel test R=0.99, P<10(-)(4)). HRM is a useful tool of adding resolving power to MLP genotyping in identifying SNPs.


Scientific Reports | 2016

Acoustic indices provide information on the status of coral reefs: an example from Moorea Island in the South Pacific

Frédéric Bertucci; Eric Parmentier; Gael Lecellier; Anthony D. Hawkins; David Lecchini

Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes. In this study we have successfully tested the potential of two acoustic indices, i.e. the average sound pressure level and the acoustic complexity index based on the frequency spectrum. Inside and outside marine protected areas of Moorea Island (French Polynesia), sound pressure level was positively correlated with the characteristics of the substratum and acoustic complexity was positively correlated with fish diversity. It clearly shows soundscape can be used to evaluate the acoustic features of marine protected areas, which presented a significantly higher ambient sound pressure level and were more acoustically complex than non-protected areas. This study further emphasizes the importance of acoustics as a tool in the monitoring of marine environments and in the elaboration and management of future conservation plans.


Ecology and Evolution | 2016

Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization.

Héloïse Rouzé; Gael Lecellier; Denis Saulnier; Véronique Berteaux-Lecellier

Abstract Coral disease outbreaks have increased over the last three decades, but their causal agents remain mostly unclear (e.g., bacteria, viruses, fungi, protists). This study details a 14‐month‐long survey of coral colonies in which observations of the development of disease was observed in nearly half of the sampled colonies. A bimonthly qPCR method was used to quantitatively and qualitatively evaluate Symbiodinium assemblages of tagged colonies, and to detect the presence of Vibrio spp. Firstly, our data showed that predisposition to disease development in general, and, more specifically, infection by Vibrio spp. in Acropora cytherea depended on which clades of Symbiodinium were harbored. In both cases, harboring clade D rather than A was beneficial to the coral host. Secondly, the detection of Vibrio spp. in only colonies that developed disease strongly suggests opportunistic traits of the bacteria. Finally, even if sporadic cases of switching and probably shuffling were observed, this long‐term survey does not suggest specific‐clade recruitment in response to stressors. Altogether, our results demonstrate that the fitness of the coral holobiont depends on its initial consortium of Symbiodinium, which is distinct among colonies, rather than a temporary adaptation achieved through acquiring different Symbiodinium clades.


Brain Behavior and Evolution | 2014

Variation in Brain Organization of Coral Reef Fish Larvae according to Life History Traits

David Lecchini; Gael Lecellier; Rynae Greta Lanyon; Sophie Holles; Bruno Poucet; Emilio Durán

In coral reefs, one of the great mysteries of teleost fish ecology is how larvae locate the relatively rare patches of habitat to which they recruit. The recruitment of fish larvae to a reef, after a pelagic phase lasting between 10 and 120 days, depends strongly on larval ability to swim and detect predators, prey and suitable habitat via sensory cues. However, no information is available about the relationship between brain organization in fish larvae and their sensory and swimming abilities at recruitment. For the first time, we explore the structural diversity of brain organization (comparative sizes of brain subdivisions: telencephalon, mesencephalon, cerebellum, vagal lobe and inferior lobe) among larvae of 25 coral reef fish species. We then investigate links between variation in brain organization and life history traits (swimming ability, pelagic larval duration, social behavior, diel activity and cue use relying on sensory perception). After accounting for phylogeny with independent contrasts, we found that brain organization covaried with some life history traits: (1) fish larvae with good swimming ability (>20 cm/s), a long pelagic duration (>30 days), diurnal activity and strong use of cues relying on sensory perception for detection of recruitment habitat had a larger cerebellum than other species. (2) Fish larvae with a short pelagic duration (<30 days) and nocturnal activity had a larger mesencephalon and telencephalon. Lastly, (3) fish larvae exhibiting solitary behavior during their oceanic phase had larger inferior and vagal lobes. Overall, we hypothesize that a well-developed cerebellum may allow fish larvae to improve their chances of successful recruitment after a long pelagic phase in the ocean. Our study is the first one to bring together quantitative information on brain organization and the relative development of major brain subdivisions across coral reef fish larvae, and more specifically to address the way in which this variation correlates with the recruitment process.


Comptes Rendus Biologies | 2015

Dinoflagellate diversity among nudibranchs and sponges from French Polynesia: Insights into associations and transfer

Patricia Wecker; Alice Fournier; Pauline Bosserelle; Cécile Debitus; Gael Lecellier; Véronique Berteaux-Lecellier

Symbioses with the dinoflagellate Symbiodinium are widespread among marine invertebrates and protists, especially in nutritionally demanding habitats, such as tropical coral reefs, where they play a major role in ecosystem survival. Moreover, apart from corals and sea anemones, many of the Symbiodinium species and clades involved in these partnerships remain to be characterized. This study provides new insights into nudibranch and sponge associations with Symbiodinium by sequencing regions of the Symbiodinium 28S rDNA and the host mitochondrial COI oxidase. Specimens were sampled between 2011 and 2013 from locations around the islands of Moorea and Tahiti, French Polynesia. Our results revealed that some of the sponges and nudibranchs harbored typical Symbiodinium from clade B or C while others harbored new, undescribed Symbiodinium-like dinoflagellates. A detailed analysis of the different life stages of the nudibranch Phestilla lugubris and of its specific coral prey, Porites rus, suggests a prey-predator horizontal transfer of the symbiont and its vertical inheritance from the parent to the eggs.


PLOS ONE | 2013

Spatial and Temporal Variations in Stable Carbon (δ13C) and Nitrogen (δ15N) Isotopic Composition of Symbiotic Scleractinian Corals

Sarah Nahon; Nicole B. Richoux; Joanna Kolasinski; Martin Desmalades; Christine Ferrier Pages; Gael Lecellier; Serge Planes; Véronique Berteaux Lecellier

Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (δ13C) and nitrogen (δ15N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were 13C-depleted and 15N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both δ13C and δ15N between coral host tissues and their photosymbionts (Δhost-photosymbionts 13C and Δhost-photosymbionts 15N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted δ13C and enriched δ15N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in δ13C and δ15N values of coral host and photosymbiont tissues and in Δhost-photosymbionts 13C and Δhost-photosymbionts 15N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral heterotrophy with higher food availability thus appears to be species-specific.


Marine Pollution Bulletin | 2015

Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities.

Héloïse Rouzé; Gael Lecellier; Marie-José Langlade; Serge Planes; Véronique Berteaux-Lecellier

Benthic communities are sensitive to anthropogenic disturbances which can result in changes in species assemblages. A spatio-temporal survey of environmental parameters was conducted over an 18-month period on four different fringing reefs of Moorea, French Polynesia, with unusual vs. frequent human pressures. This survey included assessment of biological, chemical, and physical parameters. First, the results showed a surprising lack of a seasonal trend, which was likely obscured by short-term variability in lagoons. More frequent sampling periods would likely improve the evaluation of a seasonal effect on biological and ecological processes. Second, the three reef habitats studied that were dominated by corals were highly stable, despite displaying antagonistic environmental conditions through eutrophication and sedimentation gradients, whereas the reef dominated by macroalgae was relatively unstable. Altogether, our data challenge the paradigm of labelling environmental parameters such as turbidity, sedimentation, and nutrient-richness as stress indicators.


Coral Reefs | 2017

Fish mucus metabolome reveals fish life-history traits

Miriam Reverter; Pierre Sasal; Bernard Banaigs; David Lecchini; Gael Lecellier; Nathalie Tapissier-Bontemps

Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography–mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

Collaboration


Dive into the Gael Lecellier's collaboration.

Top Co-Authors

Avatar

David Lecchini

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Véronique Berteaux-Lecellier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rynae Greta Lanyon

University of the South Pacific

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Planes

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Héloïse Rouzé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Kevin Peyrusse

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Natacha Roux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patricia Wecker

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge