Gaël Petitjean
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaël Petitjean.
Journal of Clinical Investigation | 2009
Béatrice Jacquelin; Véronique Mayau; Brice Targat; Anne Sophie Liovat; Désirée Kunkel; Gaël Petitjean; Marie Agnès Dillies; Pierre Roques; Cécile Butor; Guido Silvestri; Luis D. Giavedoni; Pierre Lebon; Françoise Barré-Sinoussi; Arndt Benecke; Michaela Müller-Trutwin
African green monkeys (AGMs) infected with the AGM type of SIV (SIVagm) do not develop chronic immune activation and AIDS, despite viral loads similar to those detected in humans infected with HIV-1 and rhesus macaques (RMs) infected with the RM type of SIV (SIVmac). Because chronic immune activation drives progressive CD4+ T cell depletion and immune cell dysfunctions, factors that characterize disease progression, we sought to understand the molecular basis of this AGM phenotype. To this end, we longitudinally assessed the gene expression profiles of blood- and lymph node-derived CD4+ cells from AGMs and RMs in response to SIVagm and SIVmac infection, respectively, using a genomic microarray platform. The molecular signature of acute infection was characterized, in both species, by strong upregulation of type I IFN-stimulated genes (ISGs). ISG expression returned to basal levels after postinfection day 28 in AGMs but was sustained in RMs, especially in the lymph node-derived cells. We also found that SIVagm induced IFN-alpha production by AGM cells in vitro and that low IFN-alpha levels were sufficient to induce strong ISG responses. In conclusion, SIV infection triggered a rapid and strong IFN-alpha response in vivo in both AGMs and RMs, with this response being efficiently controlled only in AGMs, possibly as a result of active regulatory mechanisms.
PLOS ONE | 2012
Anne-Sophie Liovat; Marie-Anne Rey-Cuille; Camille Lécuroux; Béatrice Jacquelin; Isabelle Girault; Gaël Petitjean; Yasmine Zitoun; Alain Venet; Françoise Barré-Sinoussi; Pierre Lebon; Laurence Meyer; Martine Sinet; Michaela Müller-Trutwin
T cell activation levels, viral load and CD4+ T cell counts at early stages of HIV-1 infection are predictive of the rate of progression towards AIDS. We evaluated whether the inflammatory profile during primary HIV-1 infection is predictive of the virological and immunological set-points and of disease progression. We quantified 28 plasma proteins during acute and post-acute HIV-1 infection in individuals with known disease progression profiles. Forty-six untreated patients, enrolled during primary HIV-1 infection, were categorized into rapid progressors, progressors and slow progressors according to their spontaneous progression profile over 42 months of follow-up. Already during primary infection, rapid progressors showed a higher number of increased plasma proteins than progressors or slow progressors. The plasma levels of TGF-β1 and IL-18 in primary HIV-1 infection were both positively associated with T cell activation level at set-point (6 months after acute infection) and together able to predict 74% of the T cell activation variation at set-point. Plasma IP-10 was positively and negatively associated with, respectively, T cell activation and CD4+ T cell counts at set-point and capable to predict 30% of the CD4+ T cell count variation at set-point. Moreover, plasma IP-10 levels during primary infection were predictive of rapid progression. In primary infection, IP-10 was an even better predictor of rapid disease progression than viremia or CD4+ T cell levels at this time point. The superior predictive capacity of IP-10 was confirmed in an independent group of 88 HIV-1 infected individuals. Altogether, this study shows that the inflammatory profile in primary HIV-1 infection is associated with T cell activation levels and CD4+ T cell counts at set-point. Plasma IP-10 levels were of strong predictive value for rapid disease progression. The data suggest IP-10 being an earlier marker of disease progression than CD4+ T cell counts or viremia levels.
Nature | 2017
Benjamin Descours; Gaël Petitjean; José-Luis López-Zaragoza; Timothée Bruel; Raoul Raffel; Christina Psomas; Jacques Reynes; Christine Lacabaratz; Yves Levy; Olivier Schwartz; Jean Daniel Lelievre; Monsef Benkirane
The persistence of the HIV reservoir in infected individuals is a major obstacle to the development of a cure for HIV. Here, using an in vitro model of HIV-infected quiescent CD4 T cells, we reveal a gene expression signature of 103 upregulated genes that are specific for latently infected cells, including genes for 16 transmembrane proteins. In vitro screening for surface expression in HIV-infected quiescent CD4 T cells shows that the low-affinity receptor for the immunoglobulin G Fc fragment, CD32a, is the most highly induced, with no detectable expression in bystander cells. Notably, productive HIV-1 infection of T-cell-receptor-stimulated CD4 T cells is not associated with CD32a expression, suggesting that a quiescence-dependent mechanism is required for its induction. Using blood samples from HIV-1-positive participants receiving suppressive antiretroviral therapy, we identify a subpopulation of 0.012% of CD4 T cells that express CD32a and host up to three copies of HIV DNA per cell. This CD32a+ reservoir was highly enriched in inducible replication-competent proviruses and can be predominant in some participants. Our discovery that CD32a+ lymphocytes represent the elusive HIV-1 reservoir may lead to insights that will facilitate the specific targeting and elimination of this reservoir.
PLOS Pathogens | 2013
Mathieu F. Chevalier; Gaël Petitjean; Catherine Dunyach-Remy; Céline Didier; Pierre-Marie Girard; Maria Elena Manea; Pauline Campa; Laurence Meyer; Christine Rouzioux; Jean-Philippe Lavigne; Françoise Barré-Sinoussi; Daniel Scott-Algara; Laurence Weiss
Impairment of the intestinal barrier and subsequent microbial translocation (MT) may be involved in chronic immune activation, which plays a central role in HIV pathogenesis. Th17 cells are critical to prevent MT. The aim of the study was to investigate, in patients with primary HIV infection (PHI), the early relationship between the Th17/Treg ratio, monocyte activation and MT and their impact on the T-cell activation set point, which is known to predict disease progression. 27 patients with early PHI were included in a prospective longitudinal study and followed-up for 6 months. At baseline, the Th17/Treg ratio strongly negatively correlated with the proportion of activated CD8 T cells expressing CD38/HLA-DR or Ki-67. Also, the Th17/Treg ratio was negatively related to viral load and plasma levels of sCD14 and IL-1RA, two markers of monocyte activation. In untreated patients, the Th17/Treg ratio at baseline negatively correlated with CD8 T-cell activation at month 6 defining the T-cell activation set point (% HLA-DR+CD38+ and %Ki-67+). Soluble CD14 and IL-1RA plasma levels also predicted the T-cell activation set point. Levels of I-FABP, a marker of mucosal damages, were similar to healthy controls at baseline but increased at month 6. No decrease in anti-endotoxin core antibody (EndoCAb) and no peptidoglycan were detected during PHI. In addition, 16S rDNA was only detected at low levels in 2 out 27 patients at baseline and in one additional patient at M6. Altogether, data support the hypothesis that T-cell and monocyte activation in PHI are not primarily driven by systemic MT but rather by viral replication. Moreover, the “innate immune set point” defined by the early levels of sCD14 and IL-1RA might be powerful early surrogate markers for disease progression and should be considered for use in clinical practice.
AIDS | 2012
Gaël Petitjean; Mathieu F. Chevalier; Feriel Tibaoui; Céline Didier; Maria Elena Manea; Anne-Sophie Liovat; Pauline Campa; Michaela Müller-Trutwin; Pierre-Marie Girard; Laurence Meyer; Françoise Barré-Sinoussi; Daniel Scott-Algara; Laurence Weiss
Objective:Persistent immune activation plays a central role in the pathogenesis of HIV disease. Besides natural regulatory T cells (nTregs), ‘double negative’ T cells shown to exhibit regulatory properties could be involved in the control of harmful immune activation. The aim of this study was to analyze, in patients with primary HIV infection (PHI), the relationship between CD4+CD25+CD127lowFoxP3+ nTregs or CD3+CD4−CD8− double negative T cells and systemic immune activation. Design:A prospective longitudinal study of patients with early PHI. Methods:Twenty-five patients were included. Relationships between frequency of Treg subsets and T-cell activation, assessed on fresh peripheral blood mononuclear cells, were analyzed using nonparametric tests. Cytokine production by double negative T cells was assessed following anti-CD3/anti-CD28 stimulation. Results:No relationship was found between T-cell activation and frequencies of nTregs. In contrast, a strong negative relationship was found at baseline between the proportion of double negative T cells and the proportion of activated CD8 T cells coexpressing CD38 and HLA-DR (Pu200a=u200a0.005) or expressing Ki-67 (Pu200a=u200a0.002). In addition, the frequency of double negative T cells at baseline negatively correlated with the frequency of HLA-DR+CD38+CD8+ T cells at month 6, defining the immune activation set point (Pu200a=u200a0.031). High proportions of stimulated double negative T cells were found to produce the immunosuppressive cytokines transforming growth factor-&bgr;1u200aand/or IL-10. Conclusion:The proportion of double negative T cells at baseline was found to be predictive of the immune activation set point. Our data strongly suggest that double negative T cells may control immune activation in PHI. This effect might be mediated through the production of TGF-&bgr;1/IL-10 known to downmodulate immune activation.
Retrovirology | 2007
Gaël Petitjean; Yassine Al Tabaa; Edouard Tuaillon; Clément Mettling; Vincent Baillat; Jacques Reynes; Michel Segondy; Jean Pierre Vendrell
BackgroundThe presence of HIV-1 preintegration reservoir was assessed in an in vitro experimental model of latent HIV-1 infection, and in patients treated or not with highly active antiretroviral therapy (HAART).ResultsIn resting CD4+ T lymphocytes latently infected in vitro with HIV-1, we demonstrated that the polyclonal activation induced a HIV-1 replication, which could be prevented by the use of an HIV-1 integrase inhibitor. We also showed that this reservoir was labile since the rescuable HIV-1-antigens production from unintegrated HIV-1 genomes declined over time. These data confirm that our experimental approach allows the characterization of a functional unintegrated HIV-1 reservoir. We then explored the preintegration reservoir in HIV-1-infected patients. This reservoir was detected in 11 of 12 untreated patients, in 4 of 10 sustained responders to HAART, and in one incomplete responder. This reservoir was also inducible, labile, and anti-HIV-1 integrase drug inhibited its induction. Finally, this reservoir was associated with the presence of spontaneous HIV-1 antigens producing CD4+ T cells in blood from 3 of 3 untreated patients and 2 of 2 sustained responders to HAART harboring a preintegration reservoir.ConclusionThis preintegration phase of HIV-1 latency could be a consequence of the ongoing viral replication in untreated patients and of a residual viral replication in treated patients.
PLOS Pathogens | 2014
Béatrice Jacquelin; Gaël Petitjean; Désirée Kunkel; Anne-Sophie Liovat; Simon P. Jochems; Kenneth Rogers; Mickaël J.-Y. Ploquin; Yoann Madec; Françoise Barré-Sinoussi; Nathalie Dereuddre-Bosquet; Pierre Lebon; Roger Le Grand; Francois Villinger; Michaela Müller-Trutwin
Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products.
Blood | 2009
Yassine Al Tabaa; Edouard Tuaillon; Karine Bollore; Vincent Foulongne; Gaël Petitjean; Jean-Marie Seigneurin; Christophe Duperray; Claude Desgranges; Jean-Pierre Vendrell
The Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes latency in resting memory B lymphocytes, and is involved in oncogenesis through poorly understood mechanisms. The EBV lytic cycle is initiated during plasma cell differentiation by mRNAs transcripts encoded by BZLF1, which induce the synthesis of EBV proteins such as the immediate-early antigen ZEBRA and the late membrane antigen gp350. Therefore, we assessed the capacity of circulating EBV-infected B lymphocytes from healthy EBV-seropositive subjects to enter and complete the EBV lytic cycle. Purified B lymphocytes were polyclonally stimulated and BZLF1- or gp350-secreting cells (BZLF1-SCs or gp350-SCs) were enumerated by ELISpot assays. The number of BZLF1-SCs ranged from 50 to 480/107 lymphocytes (median, 80; 25th-75th percentiles, 70-150) and gp350-SCs from 10 to 40/107 lymphocytes (median, 17; 25th-75th percentiles, 10-20). gp350-SCs represented only 7.7% to 28.6% of BZLF1-SCs (median, 15%; 25th-75th percentiles, 10.5%-20%). This EBV functional reservoir was preferentially restricted to plasma cells derived from CD27(+) IgD(-) memory B lymphocytes. In 9 of 13 subjects, EBV DNA quantification in B-cell culture supernatants gave evidence of completion of EBV lytic cycle. These results demonstrate that EBV proteins can be secreted by EBV-infected B lymphocytes from healthy carriers, a majority generating an abortive EBV lytic cycle and a minority completing the cycle.
AIDS | 2006
Pierre Becquart; Gaël Petitjean; Yassine Al Tabaa; Diane Valéa; Marie-France Huguet; Edouard Tuaillon; Nicolas Meda; Jean-Pierre Vendrell; Philippe Van de Perre
In breast milk and paired blood samples of nine HIV-1-infected lactating women, we undertook a study to detect a CD4 T-cell reservoir and to investigate its capacity to enter viral production after activation. Breast milk-infected CD4 T cells have a greater capacity to produce viral particles actively than blood CD4 T cells. This observation may explain the apparent paradox of a transmissible viral infection from a body fluid with a low viral concentration.
The Journal of Infectious Diseases | 2015
Mathieu F. Chevalier; Céline Didier; Gaël Petitjean; Marina Karmochkine; Pierre-Marie Girard; Françoise Barré-Sinoussi; Daniel Scott-Algara; Laurence Weiss
BACKGROUNDnConventional regulatory T cells (Tregs) can suppress human immunodeficiency virus type 1 (HIV-1)-specific immune responses but cannot control immune activation in primary HIV infection. Here, we characterized Treg subsets, using recently defined phenotypic delineation, and analyzed the relative contribution of cell subsets to the production of immunosuppressive cytokines in primary HIV infection.nnnMETHODSnIn a longitudinal prospective study, ex vivo phenotyping of fresh peripheral blood mononuclear cells from patients with primary HIV infection was performed at baseline and month 6 of follow-up to characterize Treg subsets, immune activation, and cytokine production in isolated CD4(+) T cells.nnnRESULTSnThe frequency of CD4(+)CD25(+)CD127(low) Tregs and the distribution between the naive, memory, and activated/memory Treg subsets was similar in patients and healthy donors. However, Tregs from patients with primary HIV infection showed peculiar phenotypic profiles, such as elevated FoxP3, ICOS, and CTLA-4 expression, with CTLA-4 expression strikingly increased in all Treg subsets both at baseline and month 6 of follow-up. The great majority of interleukin 10 (IL-10)-producing CD4(+) T cells were FoxP3(neg) (ie, Tr1-like cells). In contrast to conventional Tregs, Tr1-like cells were inversely correlated with immune activation and not associated with lower effector T-cell responses.nnnCONCLUSIONnFoxP3(neg) Tr1-like cells-major contributors to IL-10 production-may have a beneficial role by controlling immune activation in early HIV infection.