Gaelen R. Burke
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaelen R. Burke.
Annual Review of Entomology | 2010
Kerry M. Oliver; Patrick H. Degnan; Gaelen R. Burke; Nancy A. Moran
Aphids engage in symbiotic associations with a diverse assemblage of heritable bacteria. In addition to their obligate nutrient-provisioning symbiont, Buchnera aphidicola, aphids may also carry one or more facultative symbionts. Unlike obligate symbionts, facultative symbionts are not generally required for survival or reproduction and can invade novel hosts, based on both phylogenetic analyses and transfection experiments. Facultative symbionts are mutualistic in the context of various ecological interactions. Experiments on pea aphids (Acyrthosiphon pisum) have demonstrated that facultative symbionts protect against entomopathogenic fungi and parasitoid wasps, ameliorate the detrimental effects of heat, and influence host plant suitability. The protective symbiont, Hamiltonella defensa, has a dynamic genome, exhibiting evidence of recombination, phage-mediated gene uptake, and horizontal gene transfer and containing virulence and toxin-encoding genes. Although transmitted maternally with high fidelity, facultative symbionts occasionally move horizontally within and between species, resulting in the instantaneous acquisition of ecologically important traits, such as parasitoid defense.
Genome Biology and Evolution | 2011
Gaelen R. Burke; Nancy A. Moran
All vertically transmitted bacterial symbionts undergo a process of genome reduction over time, resulting in tiny, gene-dense genomes. Comparison of genomes of ancient bacterial symbionts gives only limited information about the early stages in the transition from a free-living to symbiotic lifestyle because many changes become obscured over time. Here, we present the genome sequence for the recently evolved aphid symbiont Serratia symbiotica. The S. symbiotica genome exhibits several of the hallmarks of genome evolution observed in more ancient symbionts, including elevated rates of evolution and reduction in genome size. The genome also shows evidence for massive genomic decay compared with free-living relatives in the same genus of bacteria, including large deletions, many pseudogenes, and a slew of rearrangements, perhaps promoted by mobile DNA. Annotation of pseudogenes allowed examination of the past and current metabolic capabilities of S. symbiotica and revealed a somewhat random process of gene inactivation with respect to function. Analysis of mutational patterns showed that deletions are more common in neutral DNA. The S. symbiotica genome provides a rare opportunity to study genome evolution in a recently derived heritable symbiont.
The ISME Journal | 2010
Gaelen R. Burke; Oliver Fiehn; Nancy A. Moran
We examined metabolite pools of pea aphids with different facultative symbiont infections, and characterized their effects on aphid metabolism in baseline and heat stress conditions. The bacterial symbiont Serratia symbiotica protects aphid hosts from the detrimental results of heat stress and shields the obligate symbiont Buchnera from effects of heat. We investigated whether broad effects on metabolism might correlate with this protection. Both facultative symbiont infection and heat treatment had large effects on the aphid metabolome. All three pea aphid facultative symbionts had similar effects on aphid metabolism despite their evolutionary diversity. Paradoxically, heat triggers lysis of many S. symbiotica cells and a correlated rapid reduction in S. symbiotica titres within aphid hosts. We conclude that facultative symbionts can have substantial effects on host metabolic pools, and we hypothesize that the protective effects of S. symbiotica may reflect the delivery of protective metabolites to aphid or Buchnera cells, after heat exposure.
Applied and Environmental Microbiology | 2009
Gaelen R. Burke; Benjamin B. Normark; Colin Favret; Nancy A. Moran
ABSTRACT Many aphids harbor a variety of endosymbiotic bacteria. The functions of these symbionts can range from an obligate nutritional role to a facultative role in protecting their hosts against environmental stresses. One such symbiont is “Candidatus Serratia symbiotica,” which is involved in defense against heat and potentially also in aphid nutrition. Lachnid aphids have been the focus of several recent studies investigating the transition of this symbiont from a facultative symbiont to an obligate symbiont. In a phylogenetic analysis of Serratia symbionts from 51 lachnid hosts, we found that diversity in symbiont morphology, distribution, and function is due to multiple independent origins of symbiosis from ancestors belonging to Serratia and possibly also to evolution within distinct symbiont clades. Our results do not support cocladogenesis of “Ca. Serratia symbiotica” with Cinara subgenus Cinara species and weigh against an obligate nutritional role. Finally, we show that species belonging to the subfamily Lachninae have a high incidence of facultative symbiont infection.
Journal of Virology | 2012
Gaelen R. Burke; Michael R. Strand
ABSTRACT Viruses in the genus Bracovirus (BV) (Polydnaviridae) are symbionts of parasitoid wasps that specifically replicate in the ovaries of females. Recent analysis of expressed sequence tags from two wasp species, Cotesia congregata and Chelonus inanitus, identified transcripts related to 24 different nudivirus genes. These results together with other data strongly indicate that BVs evolved from a nudivirus ancestor. However, it remains unclear whether BV-carrying wasps contain other nudivirus-like genes and what types of wasp genes may also be required for BV replication. Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV). Here we characterized MdBV replication and performed massively parallel sequencing of M. demolitor ovary transcripts. Our results indicated that MdBV replication begins in stage 2 pupae and continues in adults. Analysis of prereplication- and active-replication-stage ovary RNAs yielded 22 Gb of sequence that assembled into 66,425 transcripts. This breadth of sampling indicated that a large percentage of genes in the M. demolitor genome were sequenced. A total of 41 nudivirus-like transcripts were identified, of which a majority were highly expressed during MdBV replication. Our results also identified a suite of wasp genes that were highly expressed during MdBV replication. Among these products were several transcripts with conserved roles in regulating locus-specific DNA amplification by eukaryotes. Overall, our data set together with prior results likely identify the majority of nudivirus-related genes that are transcriptionally functional during BV replication. Our results also suggest that amplification of proviral DNAs for packaging into BV virions may depend upon the replication machinery of wasps.
Molecular Ecology | 2014
Gaelen R. Burke; Michael R. Strand
Parasitoid wasps are among the most diverse insects on earth with many species causing major mortality in host populations. Parasitoids introduce a variety of factors into hosts to promote parasitism, including symbiotic viruses, venom, teratocytes and wasp larvae. Polydnavirus‐carrying wasps use viruses to globally suppress host immunity and prevent rejection of developing parasites. Although prior results provide detailed insights into the genes viruses deliver to hosts, little is known about other products. RNAseq and proteomics were used to characterize the proteins secreted by venom glands, teratocytes and larvae from Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). These data revealed that venom glands and teratocytes secrete large amounts of a small number of products relative to ovaries and larvae. Venom and teratocyte products exhibited almost no overlap with one another or MdBV genes, which suggested that M. demolitor effector molecules are functionally partitioned according to their source. This finding was well illustrated in the case of MdBV and teratocytes. Many viral proteins have immunosuppressive functions that include disruption of antimicrobial peptide production, yet this study showed that teratocytes express high levels of the antimicrobial peptide hymenoptaecin, which likely compensates for MdBV‐mediated immunosuppression. A second key finding was the prevalence of duplications among genes encoding venom and teratocyte molecules. Several of these gene families share similarities with proteins from other species, while also showing specificity of expression in venom glands or teratocytes. Overall, these results provide the first comprehensive analysis of the proteins a polydnavirus‐carrying wasp introduces into its host.
Current Opinion in Virology | 2013
Michael R. Strand; Gaelen R. Burke
Viruses replicate to produce virions that transfer the viral genome among hosts, while endogenous viral elements (EVEs) are DNA sequences derived from viruses that integrate into the germline of multicellular organisms and are thereafter inherited like host alleles. Viruses in the family Polydnaviridae are specifically associated with insects called parasitoid wasps and exhibit many traits associated with other viruses. Polydnavirus genomes also persist as EVEs. In this short review we discuss polydnavirus evolution, compare polydnaviruses to other known EVEs of ancient origin, and examine some of the functional similarities polydnaviruses share with phage-like gene transfer agents (GTAs) from prokaryotes.
PLOS Pathogens | 2013
Gaelen R. Burke; Sarah A. Thomas; Jai Hoon Eum; Michael R. Strand
Viruses are usually thought to form parasitic associations with hosts, but all members of the family Polydnaviridae are obligate mutualists of insects called parasitoid wasps. Phylogenetic data founded on sequence comparisons of viral genes indicate that polydnaviruses in the genus Bracovirus (BV) are closely related to pathogenic nudiviruses and baculoviruses. However, pronounced differences in the biology of BVs and baculoviruses together with high divergence of many shared genes make it unclear whether BV homologs still retain baculovirus-like functions. Here we report that virions from Microplitis demolitor bracovirus (MdBV) contain multiple baculovirus-like and nudivirus-like conserved gene products. We further show that RNA interference effectively and specifically knocks down MdBV gene expression. Coupling RNAi knockdown methods with functional assays, we examined the activity of six genes in the MdBV conserved gene set that are known to have essential roles in transcription (lef-4, lef-9), capsid assembly (vp39, vlf-1), and envelope formation (p74, pif-1) during baculovirus replication. Our results indicated that MdBV produces a baculovirus-like RNA polymerase that transcribes virus structural genes. Our results also supported a conserved role for vp39, vlf-1, p74, and pif-1 as structural components of MdBV virions. Additional experiments suggested that vlf-1 together with the nudivirus-like gene int-1 also have novel functions in regulating excision of MdBV proviral DNAs for packaging into virions. Overall, these data provide the first experimental insights into the function of BV genes in virion formation.
PLOS Pathogens | 2012
Michael R. Strand; Gaelen R. Burke
Textbooks define viruses as infectious agents with nucleic acid genomes (RNA or DNA), which replicate inside living host cells to produce particles (virions) that can transfer the genome to other cells [1], [2]. The Polydnaviridae was recognized as a family of viruses in 1995, and is currently divided into two genera named the Bracovirus and Ichnovirus [3]. Polydnavirus (PDV) virions consist of enveloped nucleocapsids and package multiple circular, double-stranded (ds) DNAs with aggregate sizes that range from 190 to more than 500 kbp [4]. PDVs are also strictly associated with insects called parasitoid wasps (Hymenoptera), which are free living nectar feeders as adults but which develop during their immature stages by feeding inside the body of another insect (the host) [3], [4]. Recent studies, however, indicate that PDVs differ from all other known viruses in ways that challenge traditional views of what viruses are and how they function.
PLOS Genetics | 2014
Gaelen R. Burke; Kimberly K. O. Walden; James B. Whitfield; Hugh M. Robertson; Michael R. Strand
The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each proviral segment was bounded by homologous motifs that guide processing to form mature viral DNAs. Rapid evolution of proviral segments obscured homology between other bracovirus-carrying wasps and MdBV. However, some domains flanking MdBV proviral loci were shared with other species. All MdBV genes previously identified to encode proteins required for replication were identified. Some of these genes resided in a multigene cluster but others, including subunits of the RNA polymerase that transcribes structural genes and integrases that process proviral segments, were widely dispersed in the M. demolitor genome. Overall, our results indicate that genome dispersal is a key feature in the evolution of bracoviruses into mutualists.