Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaëlle Pierron is active.

Publication


Featured researches published by Gaëlle Pierron.


Nature | 2008

Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma

Isabelle Janoueix-Lerosey; Delphine Lequin; Laurence Brugières; Agnès Ribeiro; Loïc de Pontual; Valérie Combaret; Virginie Raynal; Alain Puisieux; Gudrun Schleiermacher; Gaëlle Pierron; Dominique Valteau-Couanet; Thierry Frebourg; Jean Michon; Stanislas Lyonnet; Jeanne Amiel; Olivier Delattre

Neuroblastoma, a tumour derived from the peripheral sympathetic nervous system, is one of the most frequent solid tumours in childhood. It usually occurs sporadically but familial cases are observed, with a subset of cases occurring in association with congenital malformations of the neural crest being linked to germline mutations of the PHOX2B gene. Here we conducted genome-wide comparative genomic hybridization analysis on a large series of neuroblastomas. Copy number increase at the locus encoding the anaplastic lymphoma kinase (ALK) tyrosine kinase receptor was observed recurrently. One particularly informative case presented a high-level gene amplification that was strictly limited to ALK, indicating that this gene may contribute on its own to neuroblastoma development. Through subsequent direct sequencing of cell lines and primary tumour DNAs we identified somatic mutations of the ALK kinase domain that mainly clustered in two hotspots. Germline mutations were observed in two neuroblastoma families, indicating that ALK is a neuroblastoma predisposition gene. Mutated ALK proteins were overexpressed, hyperphosphorylated and showed constitutive kinase activity. The knockdown of ALK expression in ALK-mutated cells, but also in cell lines overexpressing a wild-type ALK, led to a marked decrease of cell proliferation. Altogether, these data identify ALK as a critical player in neuroblastoma development that may hence represent a very attractive therapeutic target in this disease that is still frequently fatal with current treatments.


Journal of Clinical Oncology | 2010

Fusion Gene–Negative Alveolar Rhabdomyosarcoma Is Clinically and Molecularly Indistinguishable From Embryonal Rhabdomyosarcoma

Daniel Williamson; Edoardo Missiaglia; Aurélien de Reyniès; Gaëlle Pierron; Bénédicte Thuille; Gilles Palenzuela; Khin Thway; Daniel Orbach; Marick Laé; Paul Fréneaux; Kathy Pritchard-Jones; Odile Oberlin; Janet Shipley; Olivier Delattre

PURPOSE To determine whether the clinical and molecular biologic characteristics of the alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS) subtypes have relevance independent of the presence or absence of the PAX/FOXO1 fusion gene. PATIENTS AND METHODS The fusion gene status of 210 histopathologically reviewed, clinically annotated rhabdomyosarcoma samples was determined by reverse transcriptase polymerase chain reaction. Kaplan-Meier analysis was used to assess event-free survival and overall survival in fusion gene-negative ARMS (ARMSn; n = 39), fusion gene-positive ARMS (ARMSp; n = 94), and ERMS (n = 77). A total of 101 RMS samples were also profiled for whole-genome expression, and 128 were profiled for genomic copy number imbalances. Profiling data were analyzed by supervised and unsupervised methods to compare features related to histopathology and fusion gene status. Results were also projected by meta-analysis techniques across three separate publically available data sets. RESULTS Overall and event-free survival, frequency of metastases, and distribution of site at initial presentation were not significantly different between ARMSn and ERMS. Consistent with this, analysis of gene expression signatures could not reproducibly distinguish ARMSn from ERMS whereas fusion gene-positive cases were distinct. ARMSn and ERMS frequently show whole-chromosome copy number changes, notably gain of chromosome 8 with associated high levels of expression of genes from this chromosome. CONCLUSION The clinical behavior and molecular characteristics of alveolar cases without a fusion gene are indistinguishable from embryonal cases and significantly different from fusion-positive alveolar cases. This implies that fusion gene status irrespective of histology is a critical factor in risk stratification of RMS.


Nature Genetics | 2012

A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion

Gaëlle Pierron; Franck Tirode; Carlo Lucchesi; Stéphanie Reynaud; Stelly Ballet; Sarah Cohen‐Gogo; Virginie Perrin; Jean-Michel Coindre; Olivier Delattre

The identification of subtype-specific translocations has revolutionized the diagnostics of sarcoma and has provided new insight into oncogenesis. We used RNA-seq to investigate samples from individuals diagnosed with small round cell tumors of bone, possibly Ewing sarcoma, but which lacked the canonical EWSR1-ETS translocation. A new fusion was observed between BCOR (encoding the BCL6 co-repressor) and CCNB3 (encoding the testis-specific cyclin B3) on the X chromosome. RNA-seq results were confirmed by RT-PCR and through cloning of the tumor-specific genomic translocation breakpoints. In total, 24 BCOR-CCNB3–positive tumors were identified among a series of 594 sarcoma cases. Gene profiling experiments indicated that BCOR-CCNB3–positive cases are biologically distinct from other sarcomas, particularly Ewing sarcoma. Finally, we show that CCNB3 immunohistochemistry is a powerful diagnostic marker for this subgroup of sarcoma and that overexpression of BCOR-CCNB3 or of truncated CCNB3 activates S phase in NIH3T3 cells. Thus, the intrachromosomal X-chromosome fusion described here represents a new subtype of bone sarcoma caused by a newly identified gene fusion mechanism.


Breast Cancer Research | 2007

Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity

Anne Vincent-Salomon; Nadège Gruel; Carlo Lucchesi; Gaëtan MacGrogan; Rémi Dendale; Brigitte Sigal-Zafrani; Michel Longy; Virginie Raynal; Gaëlle Pierron; Isabelle de Mascarel; Corinne Taris; Dominique Stoppa-Lyonnet; Jean-Yves Pierga; Remy J. Salmon; Xavier Sastre-Garau; A. Fourquet; Olivier Delattre; Patricia de Cremoux; Alain Aurias

IntroductionTypical medullary breast carcinoma (MBC) has recently been recognized to be part of the basal-like carcinoma spectrum, a feature in agreement with the high rate of TP53 mutations previously reported in MBCs. The present study was therefore designed to identify phenotypic and genetic alterations that distinguish MBCs from basal-like carcinomas (BLC).MethodsExpression levels of estrogen receptor (ER), progesterone receptor (PR), ERBB2, TP53, cytokeratins (KRTs) 5/6, 14, 8/18, epidermal growth factor receptor and KIT, as well as TP53 gene sequence and high-density array comparative genomic hybridization (CGH) profiles, were assessed and compared in a series of 33 MBCs and 26 BLCs.ResultsAll tumors were negative for ER, PR and ERBB2. KRTs 5/6 were more frequently expressed in MBCs (94%) than in BLCs (56%) (p = 0.0004). TP53 mutations were disclosed in 20/26 MBCs (77%) and 20/24 BLCs (83%). Array CGH analysis showed that a higher number of gains (95 regions) and losses (34 regions) was observed in MBCs than in BLCs (36 regions of gain; 13 regions of losses). In addition, gains of 1q and 8q, and losses of X were found to be common to the two groups, whereas gains of 10p (53% of the cases), 9p (30.8% of the cases) and 16q (25.8% of the cases), and losses of 4p (34.8% of the cases), and amplicons of 1q, 8p, 10p and 12p were the genetic alterations found to characterize MBC.ConclusionOur study has revealed that MBCs are part of the basal-like group and share common genomic alterations with BLCs, the most frequent being 1q and 8q gains and X losses; however, MBCs are a distinct entity within the basal-like spectrum, characterized by a higher rate of KRT 5/6 expression, a higher rate of gains and losses than BLCs, recurrent 10p, 9p and 16q gains, 4p losses, and 1q, 8p, 10p and 12p amplicons. Our results thus contribute to a better understanding of the heterogeneity in basal-like breast tumors and provide potential diagnostic tools.


Annals of Neurology | 2005

Two Types of Chromosome 1p Losses with Opposite Significance in Gliomas

Ahmed Idbaih; Yannick Marie; Gaëlle Pierron; Caroline Brennetot; Khê Hoang-Xuan; Michèle Kujas; Karima Mokhtari; Marc Sanson; Julie Lejeune; Alain Aurias; Olivier Delattre; Jean-Yves Delattre

Deletion of the short arm of chromosome 1 (1p) is considered a favorable prognostic factor in glial tumors. High‐density array‐comparative genomic hybridization analysis of 108 gliomas shows two distinct types of 1p deletions. Complete hemizygous losses of 1p, which are tightly associated with 19q loss and oligodendroglial phenotype, and partial 1p deletions mainly observed in astrocytic tumors and not associated with 19q loss. Whereas the first type predicts longer overall and progression‐free survival (p < 0.0001), the second type has a pejorative prognostic value. Complete 1p‐arm evaluation therefore is required to appreciate the real clinical significance of 1p loss in gliomas. Ann Neurol 2005;58:483–487


Journal of Clinical Oncology | 2010

Impact of EWS-ETS Fusion Type on Disease Progression in Ewing's Sarcoma/Peripheral Primitive Neuroectodermal Tumor: Prospective Results From the Cooperative Euro-E.W.I.N.G. 99 Trial

Marie-Cécile Le Deley; Olivier Delattre; Karl-Ludwig Schaefer; Sue Burchill; Gabriele Koehler; Pancras C.W. Hogendoorn; Thomas Lion; Christopher Poremba; Julien Marandet; Stelly Ballet; Gaëlle Pierron; Samantha C. Brownhill; Michaela Nesslböck; Andreas Ranft; Uta Dirksen; Odile Oberlin; Ian J. Lewis; Alan W. Craft; Heribert Jürgens; Heinrich Kovar

PURPOSE EWS-ETS fusion genes are the driving force in Ewings sarcoma pathogenesis. Because of the variable breakpoint locations in the involved genes, there is heterogeneity in fusion RNA and protein architecture. Since previous retrospective studies suggested prognostic differences among patients expressing different EWS-FLI1 fusion types, the impact of fusion RNA architecture on disease progression and relapse was studied prospectively within the Euro-E.W.I.N.G. 99 clinical trial. PATIENTS AND METHODS Among 1,957 patients who registered before January 1, 2007, 703 primary tumors were accessible for the molecular biology study. Fusion type was assessed by polymerase chain reaction on frozen (n = 578) or paraffin-embedded materials (n = 125). The primary end point was the time to disease progression or relapse. Results After exclusion of noninformative patients, 565 patients were entered into the prognostic factor analysis comparing type 1 (n = 296), type 2 (n = 133), nontype 1/nontype 2 EWS-FLI1 (n = 91) and EWS-ERG fusions (n = 45). Median follow-up time was 4.5 years. The distribution of sex, age, tumor volume, tumor site, disease extension, or histologic response did not differ between the four fusion type groups. We did not observe any significant prognostic value of the fusion type on the risk of progression or relapse. The only slight difference was that the risk of progression or relapse associated with nontype 1/nontype 2 EWS-FLI1 fusions was 1.38 (95% CI, 0.96 to 2.0) times higher than risk associated with other fusion types, but it was not significant (P = .10). CONCLUSION In contrast to retrospective studies, the prospective evaluation did not confirm a prognostic benefit for type 1 EWS-FLI1 fusions.


Cancer Discovery | 2014

Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations

Franck Tirode; Didier Surdez; Xiaotu Ma; Matthew Parker; Marie Cécile Le Deley; Armita Bahrami; Zhaojie Zhang; Eve Lapouble; Sandrine Grossetête-Lalami; Michael Rusch; Stéphanie Reynaud; Thomas Rio-Frio; Erin Hedlund; Gang Wu; Xiang Chen; Gaëlle Pierron; Odile Oberlin; Sakina Zaidi; Gordon Lemmon; Pankaj Gupta; Bhavin Vadodaria; John Easton; Marta Gut; Li Ding; Elaine R. Mardis; Richard Wilson; Sheila A. Shurtleff; Valérie Laurence; Jean Michon; Perrine Marec-Berard

UNLABELLED Ewing sarcoma is a primary bone tumor initiated by EWSR1-ETS gene fusions. To identify secondary genetic lesions that contribute to tumor progression, we performed whole-genome sequencing of 112 Ewing sarcoma samples and matched germline DNA. Overall, Ewing sarcoma tumors had relatively few single-nucleotide variants, indels, structural variants, and copy-number alterations. Apart from whole chromosome arm copy-number changes, the most common somatic mutations were detected in STAG2 (17%), CDKN2A (12%), TP53 (7%), EZH2, BCOR, and ZMYM3 (2.7% each). Strikingly, STAG2 mutations and CDKN2A deletions were mutually exclusive, as confirmed in Ewing sarcoma cell lines. In an expanded cohort of 299 patients with clinical data, we discovered that STAG2 and TP53 mutations are often concurrent and are associated with poor outcome. Finally, we detected subclonal STAG2 mutations in diagnostic tumors and expansion of STAG2-immunonegative cells in relapsed tumors as compared with matched diagnostic samples. SIGNIFICANCE Whole-genome sequencing reveals that the somatic mutation rate in Ewing sarcoma is low. Tumors that harbor STAG2 and TP53 mutations have a particularly dismal prognosis with current treatments and require alternative therapies. Novel drugs that target epigenetic regulators may constitute viable therapeutic strategies in a subset of patients with mutations in chromatin modifiers.


Journal of Clinical Oncology | 2012

PAX3/FOXO1 Fusion Gene Status Is the Key Prognostic Molecular Marker in Rhabdomyosarcoma and Significantly Improves Current Risk Stratification

Edoardo Missiaglia; Daniel Williamson; Julia Chisholm; Pratyaksha Wirapati; Gaëlle Pierron; Fabien Petel; Jean-Paul Concordet; Khin Thway; Odile Oberlin; Kathy Pritchard-Jones; Olivier Delattre; Mauro Delorenzi; Janet Shipley

PURPOSE To improve the risk stratification of patients with rhabdomyosarcoma (RMS) through the use of clinical and molecular biologic data. PATIENTS AND METHODS Two independent data sets of gene-expression profiling for 124 and 101 patients with RMS were used to derive prognostic gene signatures by using a meta-analysis. These and a previously published metagene signature were evaluated by using cross validation analyses. A combined clinical and molecular risk-stratification scheme that incorporated the PAX3/FOXO1 fusion gene status was derived from 287 patients with RMS and evaluated. RESULTS We showed that our prognostic gene-expression signature and the one previously published performed well with reproducible and significant effects. However, their effect was reduced when cross validated or tested in independent data and did not add new prognostic information over the fusion gene status, which is simpler to assay. Among nonmetastatic patients, patients who were PAX3/FOXO1 positive had a significantly poorer outcome compared with both alveolar-negative and PAX7/FOXO1-positive patients. Furthermore, a new clinicomolecular risk score that incorporated fusion gene status (negative and PAX3/FOXO1 and PAX7/FOXO1 positive), Intergroup Rhabdomyosarcoma Study TNM stage, and age showed a significant increase in performance over the current risk-stratification scheme. CONCLUSION Gene signatures can improve current stratification of patients with RMS but will require complex assays to be developed and extensive validation before clinical application. A significant majority of their prognostic value was encapsulated by the fusion gene status. A continuous risk score derived from the combination of clinical parameters with the presence or absence of PAX3/FOXO1 represents a robust approach to improving current risk-adapted therapy for RMS.


Molecular Oncology | 2015

Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types

Ronald Lebofsky; Charles Decraene; Virginie Bernard; Maud Kamal; Anthony Blin; Quentin Leroy; Thomas Rio Frio; Gaëlle Pierron; Céline Callens; Ivan Bièche; Adrien Saliou; Jordan Madic; Etienne Rouleau; François-Clément Bidard; Olivier Lantz; Marc-Henri Stern; Christophe Le Tourneau; Jean-Yves Pierga

Cell‐free tumor DNA (ctDNA) has the potential to enable non‐invasive diagnostic tests for personalized medicine in providing similar molecular information as that derived from invasive tumor biopsies. The histology‐independent phase II SHIVA trial matches patients with targeted therapeutics based on previous screening of multiple somatic mutations using metastatic biopsies. To evaluate the utility of ctDNA in this trial, as an ancillary study we performed de novo detection of somatic mutations using plasma DNA compared to metastasis biopsies in 34 patients covering 18 different tumor types, scanning 46 genes and more than 6800 COSMIC mutations with a multiplexed next‐generation sequencing panel. In 27 patients, 28 of 29 mutations identified in metastasis biopsies (97%) were detected in matched ctDNA. Among these 27 patients, one additional mutation was found in ctDNA only. In the seven other patients, mutation detection from metastasis biopsy failed due to inadequate biopsy material, but was successful in all plasma DNA samples providing three more potential actionable mutations. These results suggest that ctDNA analysis is a potential alternative and/or replacement to analyses using costly, harmful and lengthy tissue biopsies of metastasis, irrespective of cancer type and metastatic site, for multiplexed mutation detection in selecting personalized therapies based on the patients tumor genetic content.


Cancer Research | 2009

High Frequency of TP53 Mutation in BRCA1 and Sporadic Basal-like Carcinomas but not in BRCA1 Luminal Breast Tumors

Elodie Manié; Anne Vincent-Salomon; Jacqueline Lehmann-Che; Gaëlle Pierron; Elisabeth Turpin; Mathilde Warcoin; Nadège Gruel; Ingrid Lebigot; Xavier Sastre-Garau; Rosette Lidereau; Audrey Remenieras; Jean Feunteun; Olivier Delattre; Dominique Stoppa-Lyonnet; Marc-Henri Stern

Breast tumors with a germ-line mutation of BRCA1 (BRCA1 tumors) and basal-like carcinoma (BLC) are associated with a high rate of TP53 mutation. Because BRCA1 tumors frequently display a basal-like phenotype, this study was designed to determine whether TP53 mutations are correlated with the hereditary BRCA1 mutated status or the particular phenotype of these tumors. The TP53 gene status was first investigated in a series of 35 BRCA1 BLCs using immunohistochemistry, direct sequencing of the coding sequence, and functional analysis of separated alleles in yeast, and compared with the TP53 status in a series of 38 sporadic (nonhereditary) BLCs. Using this sensitive approach, TP53 was found to be frequently mutated in both BRCA1 (34 of 35, 97%) and sporadic (35 of 38, 92%) BLCs. However, the spectrum of mutation was different, particularly with a higher rate of complex mutations, such as insertion/deletion, in BRCA1 BLCs than in the sporadic group [14 of 33 (42%) and 3 of 34 (9%), [corrected] respectively; P = 0.002]. Secondly, the incidence of TP53 mutations was analyzed in 19 BRCA1 luminal tumors using the same strategy. Interestingly, only 10 of these 19 tumors were mutated (53%), a frequency similar to that found in grade-matched sporadic luminal tumors. In conclusion, TP53 mutation is highly recurrent in BLCs independently of BRCA1 status, but not a common feature of BRCA1 luminal tumors.

Collaboration


Dive into the Gaëlle Pierron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge