Gaëlle Vandermeulen
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaëlle Vandermeulen.
Journal of Controlled Release | 2013
Héloïse Ragelle; Gaëlle Vandermeulen; Véronique Préat
Recently, chitosan has attracted significant attention in the formulation of small interfering RNA (siRNA). Because of its cationic nature, chitosan can easily complex siRNA, thus readily forming nanoparticles. Moreover, chitosan is biocompatible and biodegradable, which make it a good candidate for siRNA delivery in vivo. However, chitosan requires further development to achieve high efficiency. This review will describe the major barriers that impair the efficiency of the chitosan-based siRNA delivery systems, including the stability of the delivery system in biological fluids and endosomal escape. Several solutions to counteract these barriers have been developed and will be discussed. The parameters to consider for designing powerful delivery systems will be described, particularly the possibilities for grafting targeting ligands. Finally, optimized systems that allow in vivo therapeutic applications for both local and systemic delivery will be reviewed. This review will present recent improvements in chitosan-based siRNA delivery systems that overcome many of these systems previous pitfalls and pave the way to a new generation of siRNA delivery systems.
Journal of Controlled Release | 2013
Kiran Kumar Chereddy; Régis Coco; Patrick Memvanga Bondo; Bernard Ucakar; Anne des Rieux; Gaëlle Vandermeulen; Véronique Préat
Wound healing is a complex process involving many interdependent and overlapping sequences of physiological actions. The application of exogenous lactate released from poly (lactic-co-glycolic acid) (PLGA) polymer accelerated angiogenesis and wound healing processes. Curcumin is a well-known topical wound healing agent for both normal and diabetic-impaired wounds. Hence, we hypothesized that the PLGA nanoparticles encapsulating curcumin could much potentially accelerate the wound healing. In a full thickness excisional wound healing mouse model, PLGA-curcumin nanoparticles showed a twofold higher wound healing activity compared to that of PLGA or curcumin. Histology and RT-PCR studies confirmed that PLGA-curcumin nanoparticles exhibited higher re-epithelialization, granulation tissue formation and anti-inflammatory potential. PLGA nanoparticles offered various benefits for the encapsulated curcumin like protection from light degradation, enhanced water solubility and showed a sustained release of curcumin over a period of 8 days. In conclusion, we demonstrated the additive effect of lactic acid from PLGA and encapsulated curcumin for the active healing of wounds.
Journal of Controlled Release | 2014
Héloïse Ragelle; Raphaël Riva; Gaëlle Vandermeulen; Broes Naeye; Vincent Pourcelle; C. S. Le Duff; Cécile D'Haese; Bernard Nysten; Kevin Braeckmans; S.C. De Smedt; Christine Jérôme; Véronique Préat
This study aims at developing chitosan-based nanoparticles suitable for an intravenous administration of small interfering RNA (siRNA) able to achieve (i) high gene silencing without cytotoxicity and (ii) stability in biological media including blood. Therefore, the influence of chitosan/tripolyphosphate ratio, chitosan physicochemical properties, PEGylation of chitosan as well as the addition of an endosomal disrupting agent and a negatively charged polymer was assessed. The gene silencing activity and cytotoxicity were evaluated on B16 melanoma cells expressing luciferase. We monitored the integrity and the size behavior of siRNA nanoparticles in human plasma using fluorescence fluctuation spectroscopy and single particle tracking respectively. The presence of PEGylated chitosan and poly(ethylene imine) was essential for high levels of gene silencing in vitro. Chitosan nanoparticles immediately released siRNA in plasma while the inclusion of hyaluronic acid and high amount of poly(ethylene glycol) in the formulation improved the stability of the particles. The developed formulations of PEGylated chitosan-based nanoparticles that achieve high gene silencing in vitro, low cytotoxicity and high stability in plasma could be promising for intravenous delivery of siRNA.
The Journal of Membrane Biology | 2010
Liévin Daugimont; Nolwenn Baron; Gaëlle Vandermeulen; Nataša Pavšelj; Damijan Miklavčič; Marie-Caroline Jullien; Gonzalo Cabodevila; Lluis M. Mir; Véronique Préat
The association of microneedles with electric pulses causing electroporation could result in an efficient and less painful delivery of drugs and DNA into the skin. Hollow conductive microneedles were used for (1) needle-free intradermal injection and (2) electric pulse application in order to achieve electric field in the superficial layers of the skin sufficient for electroporation. Microneedle array was used in combination with a vibratory inserter to disrupt the stratum corneum, thus piercing the skin. Effective injection of proteins into the skin was achieved, resulting in an immune response directed to the model antigen ovalbumin. However, when used both as microneedles to inject and as electrodes to apply the electric pulses, the setup showed several limitations for DNA electrotransfer. This could be due to the distribution of the electric field in the skin as shown by numerical calculations and/or the low dose of DNA injected. Further investigation of these parameters is needed in order to optimize minimally invasive DNA electrotransfer in the skin.
Journal of Controlled Release | 2014
Kiran Kumar Chereddy; Charles-henry Her; Michela Comune; Claudia Moia; Alessandra Lopes; Paolo E. Porporato; Julie Vanacker; Martin C. Lam; Lars Steinstraesser; Pierre Sonveaux; Huijun Zhu; Lino Ferreira; Gaëlle Vandermeulen; Véronique Préat
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles.
Molecular Therapy | 2011
Gaëlle Vandermeulen; Corinne Marie; Daniel Scherman; Véronique Préat
Since it has been established that the injection of plasmid DNA can lead to an efficient expression of a specific protein in vivo, nonviral gene therapy approaches have been considerably improved, allowing clinical trials. However, the use of antibiotic resistance genes as selection markers for plasmid production raises safety concerns which are often pointed out by the regulatory authorities. Indeed, a horizontal gene transfer to patients bacteria cannot be excluded, and residual antibiotic in the final product could provoke allergic reactions in sensitive individuals. A new generation of plasmid backbones devoid of antibiotic resistance marker has emerged to increase the safety profile of nonviral gene therapy trials. This article reviews the existing strategies for plasmid maintenance and, in particular, those that do not require the use of antibiotic resistance genes. They are based either on the complementation of auxotrophic strain, toxin-antitoxin systems, operator-repressor titration, RNA markers, or on the overexpression of a growth essential gene. Minicircles that allow removing of the antibiotic resistance gene from the initial vector will also be discussed. Furthermore, reported use of antibiotic-free plasmids in preclinical or clinical studies will be listed to provide a comprehensive view of these innovative technologies.
Journal of Gene Medicine | 2010
Corinne Marie; Gaëlle Vandermeulen; Mickael Quiviger; Magali Richard; Véronique Préat; Daniel Scherman
Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system.
Journal of Controlled Release | 2015
Joana M. Silva; Eva Zupančič; Gaëlle Vandermeulen; Vanessa G. Oliveira; Ana Salgado; Mafalda Videira; Manuela Gaspar; Luis Graca; Véronique Préat; Helena F. Florindo
We hypothesized that the co-entrapment of melanoma-associated antigens and the Toll-like receptor (TLR) ligands Poly(I:C) and CpG, known to be Th1-immunopotentiators, in mannose-functionalized aliphatic polyester-based nanoparticles (NPs) could be targeted to mannose receptors on antigen-presenting cells and induce anti-tumor immune responses. High entrapment efficiencies of antigens and immunopotentiators in 150nm NPs were obtained. The co-entrapment of the model antigen ovalbumin and the TLR ligands was crucial to induce high IgG2c/IgG1 ratios and high levels of IFN-γ and IL-2. Mannose-functionalization of NPs potentiated the Th1 immune response. The nanoparticulate vaccines decreased the growth rate of murine B16F10 melanoma tumors in therapeutic and prophylatic settings. The combination of mannose-functionalized NPs containing MHC class I- or class II-restricted melanoma antigens and the TLR ligands induced the highest tumor growth delay. Overall, we demonstrate that the multifunctional properties of NPs in terms of targeting and antigen/adjuvant delivery have high cancer immunotherapeutic potential.
International Journal of Pharmaceutics | 2010
Laurence Plapied; Gaëlle Vandermeulen; Benoît Vroman; Véronique Préat; Anne des Rieux
Chitosan is an ideal candidate for oral DNA delivery due to its mucoadhesive properties. Chitosan (CS) produced under GMP conditions from fungal source was used to encapsulate a plasmid DNA coding for a reporter gene. Nanoparticles made by complex coacervation of CS and DNA had a size around 200 nm, a positive zeta potential, a high association of DNA and protected the plasmid against nuclease degradation. Their transfection ability was assessed in differentiated intestinal Caco-2 cells. An N/P ratio of 4 and a DNA concentration of 8 microg/ml were the optimal conditions leading to a transfection efficiency similar to the one reached with polyethyleneimine (PEI)-DNA complexes without cytotoxicity. M cells in monolayers influenced DNA uptake up to 8 microg of DNA/ml when complexed with CS. Fungal trimethylchitosan was also tested but the complexes interactions were too strong to induce transfection in vitro. Confocal microscopy studies showed that CS/DNA and PEI/DNA nanoparticles were found at the apical surface of cell monolayers and DNA was co-localized within the nucleus. Quantification seemed to show that more DNA was associated with the cells when incubated with CS nanoparticles and that the presence of M cells slightly influenced DNA uptake when complexed with CS. In conclusion, we developed a new nanocarrier made of fungal CS promising for oral gene delivery and oral DNA vaccination.
Molecular Therapy | 2014
Lars Steinstraesser; Martin C. Lam; Frank Jacobsen; Paolo E. Porporato; Kiran Kumar Chereddy; Mustafa Becerikli; Ingo Stricker; Robert E. W. Hancock; Marcus Lehnhardt; Pierre Sonveaux; Véronique Préat; Gaëlle Vandermeulen
Host defense peptides, in particular LL-37, are emerging as potential therapeutics for promoting wound healing and inhibiting bacterial growth. However, effective delivery of the LL-37 peptide remains limiting. We hypothesized that skin-targeted electroporation of a plasmid encoding hCAP-18/LL-37 would promote the healing of wounds. The plasmid was efficiently delivered to full-thickness skin wounds by electroporation and it induced expression of LL-37 in the epithelium. It significantly accelerated reepithelialization of nondiabetic and diabetic wounds and caused a significant VEGFa and interleukin (IL)-6 induction. IL-6 was involved in LL-37-mediated keratinocyte migration in vitro and IL-6 neutralizing antibodies delivered to mice were able to suppress the wound healing activity of the hCAP-18/LL-37 plasmid. In a hindlimb ischemia model, electroporation of the hCAP-18/LL-37 plasmid increased blood perfusion, reduced muscular atrophy, and upregulated the angiogenic chemokines VEGFa and SDF-1a, and their receptors VEGF-R and CXCR-4. These findings demonstrate that a localized gene therapy with LL-37 is a promising approach for the treatment of wounds.