Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaëtan Droc is active.

Publication


Featured researches published by Gaëtan Droc.


Nature | 2012

The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

Angélique D’Hont; Jean-Marc Aury; Franc-Christophe Baurens; Françoise Carreel; Olivier Garsmeur; Benjamin Noel; Stéphanie Bocs; Gaëtan Droc; Mathieu Rouard; Corinne Da Silva; Kamel Jabbari; Céline Cardi; Julie Poulain; Marlène Souquet; Karine Labadie; Cyril Jourda; Juliette Lengellé; Marguerite Rodier-Goud; Adriana Alberti; Maria Bernard; Margot Corréa; Saravanaraj Ayyampalayam; Michael R. McKain; Jim Leebens-Mack; Diane Burgess; Michael Freeling; Didier Mbéguié-A-Mbéguié; Matthieu Chabannes; Thomas Wicker; Olivier Panaud

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon–eudicotyledon divergence.


Nature Genetics | 2011

The genome of Theobroma cacao

Xavier Argout; Jérôme Salse; Jean-Marc Aury; Mark J. Guiltinan; Gaëtan Droc; Jérôme Gouzy; Mathilde Allègre; Cristian Chaparro; Thierry Legavre; Siela N. Maximova; Michael Abrouk; Florent Murat; Olivier Fouet; Julie Poulain; Manuel Ruiz; Yolande Roguet; Maguy Rodier-Goud; Jose Fernandes Barbosa-Neto; François Sabot; Dave Kudrna; Jetty S. S. Ammiraju; Stephan C. Schuster; John E. Carlson; Erika Sallet; Thomas Schiex; Anne Dievart; Melissa Kramer; Laura Gelley; Zi Shi; Aurélie Bérard

We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.


Molecular Plant-microbe Interactions | 2008

A Genome-Wide Meta-Analysis of Rice Blast Resistance Genes and Quantitative Trait Loci Provides New Insights into Partial and Complete Resistance

Elsa Ballini; Jean-Benoit Morel; Gaëtan Droc; Adam H. Price; Brigitte Courtois; Jean-Loup Nottéghem; Didier Tharreau

The completion of the genome sequences of both rice and Magnaporthe oryzae has strengthened the position of rice blast disease as a model to study plant-pathogen interactions in monocotyledons. Genetic studies of blast resistance in rice were established in Japan as early as 1917. Despite such long-term study, examples of cultivars with durable resistance are rare, partly due to our limited knowledge of resistance mechanisms. A rising number of blast resistance genes and quantitative trait loci (QTL) have been genetically described, and some have been characterized during the last 20 years. Using the rice genome sequence, can we now go a step further toward a better understanding of the genetics of blast resistance by combining all these results? Is such knowledge appropriate and sufficient to improve breeding for durable resistance? A review of bibliographic references identified 85 blast resistance genes and approximately 350 QTL, which we mapped on the rice genome. These data provide a useful update on blast resistance genes as well as new insights to help formulate hypotheses about the molecular function of blast QTL, with special emphasis on QTL for partial resistance. All these data are available from the OrygenesDB database.


Science | 2014

The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

Lorenzo Carretero-Paulet; Alexis Dereeper; Gaëtan Droc; Romain Guyot; Marco Pietrella; Chunfang Zheng; Adriana Alberti; François Anthony; Giuseppe Aprea; Jean-Marc Aury; Pascal Bento; Maria Bernard; Stéphanie Bocs; Claudine Campa; Alberto Cenci; Marie Christine Combes; Dominique Crouzillat; Corinne Da Silva; Loretta Daddiego; Fabien De Bellis; Stéphane Dussert; Olivier Garsmeur; Thomas Gayraud; Valentin Guignon; Katharina Jahn; Véronique Jamilloux; Thierry Joët; Karine Labadie; Tianying Lan; Julie Leclercq

Coffee, tea, and chocolate converge Caffeine has evolved multiple times among plant species, but no one knows whether these events involved similar genes. Denoeud et al. sequenced the Coffea canephora (coffee) genome and identified a conserved gene order (see the Perspective by Zamir). Although this species underwent fewer genome duplications than related species, the relevant caffeine genes experienced tandem duplications that expanded their numbers within this species. Scientists have seen similar but independent expansions in distantly related species of tea and cacao, suggesting that caffeine might have played an adaptive role in coffee evolution. Science, this issue p. 1181; see also p. 1124 The genetic origins of coffee’s constituents reveal intriguing links to cacao and tea. Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


PLOS ONE | 2013

Genome-wide association mapping of root traits in a japonica rice panel.

Brigitte Courtois; Alain Audebert; Audrey Dardou; Sandrine Roques; Thaura Ghneim Herrera; Gaëtan Droc; Julien Frouin; Lauriane Rouan; Eric Gozé; Andrzej Kilian; Nourollah Ahmadi; Michael Dingkuhn

Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r2>0.6, on average, for 20 kb mean distances between markers). The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth) root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates.


Nucleic Acids Research | 2011

GreenPhylDB v2.0: comparative and functional genomics in plants

Mathieu Rouard; Valentin Guignon; Christelle Aluome; Marie-Angélique Laporte; Gaëtan Droc; Christian Walde; Christian M. Zmasek; Christophe Périn; Matthieu Conte

GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery.


Nucleic Acids Research | 2006

OryGenesDB: a database for rice reverse genetics

Gaëtan Droc; Manuel Ruiz; Pierre Larmande; Andy Pereira; Pietro Piffanelli; Jean-Benoit Morel; Anne Dievart; Brigitte Courtois; Emmanuel Guiderdoni; Christophe Périn

Insertional mutant databases containing Flanking Sequence Tags (FSTs) are becoming key resources for plant functional genomics. We have developed OryGenesDB (), a database dedicated to rice reverse genetics. Insertion mutants of rice genes are catalogued by Flanking Sequence Tag (FST) information that can be readily accessed by this database. Our database presently contains 44166 FSTs generated by most of the rice insertional mutagenesis projects. The OryGenesDB genome browser is based on the powerful Generic Genome Browser (GGB) developed in the framework of the Generic Model Organism Project (GMOD). The main interface of our web site displays search and analysis interfaces to look for insertions in any candidate gene of interest. Several starting points can be used to exhaustively retrieve the insertions positions and associated genomic information using blast, keywords or gene name search. The toolbox integrated in our database also includes an ‘anchoring’ option that allows immediate mapping and visualization of up to 50 nucleic acid sequences in the rice Genome Browser of OryGenesDB. As a first step toward plant comparative genomics, we have linked the rice and Arabidopsis whole genome using all the predicted pairs of orthologs by best BLAST mutual hit (BBMH) connectors.


Plant Molecular Biology | 2005

EU-OSTID: A collection of transposon insertional mutants for functional genomics in rice

L.J.G. van Enckevort; Gaëtan Droc; Pietro Piffanelli; Raffaella Greco; Cyril Gagneur; Christele Weber; Victor Gonzalez; Pere Cabot; Fabio Fornara; Stefano Berri; Berta Miro; Ping Lan; Marta Rafel; Teresa Capell; Pere Puigdomènech; Pieter B.F. Ouwerkerk; Annemarie H. Meijer; Enrico Pè; Lucia Colombo; Paul Christou; Emmanuel Guiderdoni; Andy Pereira

A collection of 1373 unique flanking sequence tags (FSTs), generated from Ac/Ds and Ac transposon lines for reverse genetics studies, were produced in japonica and indica rice, respectively. The Ds and Ac FSTs together with the original T-DNAs were assigned a position in the rice genome sequence represented as assembled pseudomolecules, and found to be distributed evenly over the entire rice genome with a distinct bias for predicted gene-rich regions. The bias of the Ds and Ac transposon inserts for genes was exemplified by the presence of 59% of the inserts in genes annotated on the rice chromosomes and 41% present in genes transcribed as disclosed by their homology to cDNA clones. In a screen for inserts in a set of 75 well annotated transcription factors, including homeobox-containing genes, we found six Ac/Ds inserts. This high frequency of Ds and Ac inserts in genes suggests that saturated knockout mutagenesis in rice using this strategy will be efficient and possible with a lower number of inserts than expected. These FSTs and the corresponding plant lines are publicly available through OrygenesDB database and from the EU consortium members.


Nucleic Acids Research | 2008

Oryza Tag Line, a phenotypic mutant database for the Génoplante rice insertion line library

Pierre Larmande; Mathias Lorieux; Christophe Perin; Matthieu Bouniol; Gaëtan Droc; Christophe Sallaud; Pascual Perez; Isabelle Barnola; Corinne Biderre-Petit; Jérôme Martin; Jean Benoı̂t Morel; Alexander A. T. Johnson; Fabienne Bourgis; Alain Ghesquière; Manuel Ruiz; Brigitte Courtois; Emmanuel Guiderdoni

To organize data resulting from the phenotypic characterization of a library of 30 000 T-DNA enhancer trap (ET) insertion lines of rice (Oryza sativa L cv. Nipponbare), we developed the Oryza Tag Line (OTL) database (http://urgi.versailles.inra.fr/OryzaTagLine/). OTL structure facilitates forward genetic search for specific phenotypes, putatively resulting from gene disruption, and/or for GUSA or GFP reporter gene expression patterns, reflecting ET-mediated endogenous gene detection. In the latest version, OTL gathers the detailed morpho-physiological alterations observed during field evaluation and specific screens in a first set of 13 928 lines. Detection of GUS or GFP activity in specific organ/tissues in a subset of the library is also provided. Search in OTL can be achieved through trait ontology category, organ and/or developmental stage, keywords, expression of reporter gene in specific organ/tissue as well as line identification number. OTL now contains the description of 9721 mutant phenotypic traits observed in 2636 lines and 1234 GUS or GFP expression patterns. Each insertion line is documented through a generic passport data including production records, seed stocks and FST information. 8004 and 6101 of the 13 928 lines are characterized by at least one T-DNA and one Tos17 FST, respectively that OTL links to the rice genome browser OryGenesDB.


Plant Molecular Biology | 2007

Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library

Pietro Piffanelli; Gaëtan Droc; Delphine Mieulet; Nadège Lanau; Martine Bès; Emmanuelle Bourgeois; Claire Rouvière; Frédérick Gavory; Corinne Cruaud; Alain Ghesquière; Emmanuel Guiderdoni

We characterized the insertion sites of newly transposed copies of the tissue-culture-induced ty1-copia retrotransposon Tos17 in the Oryza Tag Line (OTL) T-DNA mutant library of rice cv. Nipponbare. While Nipponbare contains two native copies of Tos17 the number of additional copies, deduced from Southern blot analyses in a subset of 384 T-DNA lines and using a reverse transcriptase probe specific to the element, ranged from 1 to 8 and averaged 3.37. These copies were shown to be stably inherited and to segregate independently in the progenies of insertion lines. We took advantage of the absence of EcoRV restriction sites in the immediate vicinity of the 3′ LTR of the native copies of Tos17 in the genome sequence of cv. Nipponbare, thereby preventing amplification of corresponding PCR fragments, to efficiently and selectively amplify and sequence flanking regions of newly transposed Tos17 inserts. From 25,286 T-DNA plants, we recovered 19,252 PCR products (76.1%), which were sequenced yielding 14,513 FSTs anchored on the rice pseudomolecules. Following elimination of redundant sequences due to the presence of T-DNA plants deriving from the same cell lineage, these FSTs corresponded to 11,689 unique insertion sites. These unique insertions exhibited higher densities in subtelomeric regions of the chromosomes and hot spots for integration, following a distribution that remarkably paralleled that of Tos17 sites in the National Institute for Agrobiological Sciences (NIAS) library. The insertion sites were mostly found in genic regions (77.5%) and preferably in coding sequences (68.8%) compared to unique T-DNA insertion sites in the same materials (49.1% and 28.3%, respectively). Predicted non- transposable element (TE) genes prone to a high frequency of Tos17 integration (i.e. from 5 to 121 inserts) in the OTL T-DNA collection were generally found to be also hot spots for integration in the NIAS library. The 9,060 Tos17 inserts inserted into non TE genes were found to disrupt a total of 2,773 genes with an average of 3.27 inserts per gene, similar to that in the NIAS library (3.28 inserts per gene on average) whereas the 4,472 T-DNA inserted into genes in the same materials disrupted a total of 3,911 genes (1.14 inserts per gene on average). Interestingly, genes disrupted by both Tos17 and T-DNA inserts in the library represented only 14.9% and 10.6% of the complement of genes interrupted by Tos17 and T-DNA inserts respectively while 52.1% of the genes tagged by Tos17 inserts in the OTL library were found to be tagged also in the NIAS Tos17 library. We concluded that the first advantage in characterizing Tos17 inserts in a rice T-DNA collection lies in a complementary tagging of novel genes and secondarily in finding other alleles in a same genetic background, thereby greatly enhancing the library genome coverage and its overall value for implementing forward and reverse genetics strategies.

Collaboration


Dive into the Gaëtan Droc's collaboration.

Top Co-Authors

Avatar

Olivier Garsmeur

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Mathieu Rouard

Bioversity International

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Guiderdoni

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphanie Bocs

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Pierre Larmande

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Angélique D'Hont

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Carine Charron

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Brigitte Courtois

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anne Dievart

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge