Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaetano Cairo is active.

Publication


Featured researches published by Gaetano Cairo.


Pharmacological Reviews | 2004

Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity

Giorgio Minotti; Pierantonio Menna; Emanuela Salvatorelli; Gaetano Cairo; Luca Gianni

The clinical use of anthracyclines like doxorubicin and daunorubicin can be viewed as a sort of double-edged sword. On the one hand, anthracyclines play an undisputed key role in the treatment of many neoplastic diseases; on the other hand, chronic administration of anthracyclines induces cardiomyopathy and congestive heart failure usually refractory to common medications. Second-generation analogs like epirubicin or idarubicin exhibit improvements in their therapeutic index, but the risk of inducing cardiomyopathy is not abated. It is because of their janus behavior (activity in tumors vis-à-vis toxicity in cardiomyocytes) that anthracyclines continue to attract the interest of preclinical and clinical investigations despite their longer-than-40-year record of longevity. Here we review recent progresses that may serve as a framework for reappraising the activity and toxicity of anthracyclines on basic and clinical pharmacology grounds. We review 1) new aspects of anthracycline-induced DNA damage in cancer cells; 2) the role of iron and free radicals as causative factors of apoptosis or other forms of cardiac damage; 3) molecular mechanisms of cardiotoxic synergism between anthracyclines and other anticancer agents; 4) the pharmacologic rationale and clinical recommendations for using cardioprotectants while not interfering with tumor response; 5) the development of tumor-targeted anthracycline formulations; and 6) the designing of third-generation analogs and their assessment in preclinical or clinical settings. An overview of these issues confirms that anthracyclines remain “evergreen” drugs with broad clinical indications but have still an improvable therapeutic index.


Journal of Biological Chemistry | 1999

Transferrin Receptor Induction by Hypoxia HIF-1-MEDIATED TRANSCRIPTIONAL ACTIVATION AND CELL-SPECIFIC POST-TRANSCRIPTIONAL REGULATION

Lorenza Tacchini; Laura Bianchi; Aldo Bernelli-Zazzera; Gaetano Cairo

The tight relationship between oxygen and iron prompted us to investigate whether the expression of transferrin receptor (TfR), which mediates cellular iron uptake, is regulated by hypoxia. In Hep3B human hepatoma cells incubated in 1% O2 or treated with CoCl2, which mimics hypoxia, we detected a 3-fold increase of TfR mRNA despite a decrease of iron regulatory proteins activity. Increased expression resulted from a 4-fold stimulation of the nuclear transcription rate of the TfR gene by both hypoxia and CoCl2. A role for hypoxia-inducible factor (HIF-1), which activates transcription by binding to hypoxia-responsive elements in the activation of TfR, stems from the following observations. (a) Hypoxia and CoCl2-dependent expression of luciferase reporter gene in transiently transfected Hep3B cells was mediated by a fragment of the human TfR promoter containing a putative hypoxia-responsive element sequence, (b) mutation of this sequence prevented hypoxic stimulation of luciferase activity, (c) binding to this sequence of HIF-1α, identified by competition experiments and supershift assays, was induced in Hep3B cells by hypoxia and CoCl2. In erythroid K562 cells, the same treatments did not affect iron regulatory proteins activity, thus resulting in a stimulation of TfR gene expression higher than in hepatoma cells.


European Journal of Immunology | 2010

Differential regulation of iron homeostasis during human macrophage polarized activation

Stefania Recalcati; Massimo Locati; Agnese Marini; Paolo Santambrogio; Federica Zaninotto; Maria De Pizzol; Luca Zammataro; Domenico Girelli; Gaetano Cairo

Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions, mimicked by the combined action of LPS and IFN‐γ (M1 polarization). However, macrophages can undergo an alternative type of activation stimulated by Th2 cytokines, and acquire a role in cell growth and tissue repair control (M2 polarization). We characterized the expression of genes related to iron homeostasis in fully differentiated unpolarized (M0), M1 and M2 human macrophages. The molecular signature of the M1 macrophages showed changes in gene expression (ferroportin repression and H ferritin induction) that favour iron sequestration in the reticuloendothelial system, a hallmark of inflammatory disorders, whereas the M2 macrophages had an expression profile (ferroportin upregulation and the downregulation of H ferritin and heme oxygenase) that enhanced iron release. The conditioned media from M2 macrophages promoted cell proliferation more efficiently than those of M1 cells and the effect was blunted by iron chelation. The role of ferroportin‐mediated iron release was demonstrated by the absence of differences from the media of macrophages of a patient with loss of function ferroportin mutation. The distinct regulation of iron homeostasis in M2 macrophages provides insights into their role under pathophysiological conditions.


The FASEB Journal | 1999

Role of iron in anthracycline cardiotoxicity: new tunes for an old song?

Giorgio Minotti; Gaetano Cairo; Elena Monti

The clinical use of anticancer anthra‐cyclines is limited by the development of a distinctive and life‐threatening form of cardiomyopathy upon chronic treatment. Commonly accepted mechanistic hypotheses have assigned a pivotal role to iron, which would act as a catalyst for free radical reactions and oxidative stress. Although perhaps involved in acute aspects of anthracycline cardiotoxicity, the role of free radical‐based mechanisms in long‐term effects has been challenged on both experimental and clinical grounds, and alternative hypotheses independent of iron and free radicals have flourished. More recently, studies of the role of C‐13 hydroxy metabolites of anthracyclines have provided new perspectives on the role of iron in the cardio‐toxicity of these drugs, showing that such metabolites can impair intracellular iron handling and homeostasis. The present review applies a multisided approach to the critical evaluation of various hypotheses proposed over the last decade for the role of iron in anthracycline‐induced cardiotoxicity. The main goal of the authors is to build a unifying pattern that would both account for hitherto unexplained experimental observations and help design novel and more rational strategies toward a much‐needed improvement in the therapeutic index of anthracyclines.—Minotti, G., Cairo, G., Monti, E. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J. 13, 199–212 (1999)


Free Radical Biology and Medicine | 2002

The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage

Gaetano Cairo; Stefania Recalcati; Antonello Pietrangelo; Giorgio Minotti

Iron acquisition is a fundamental requirement for many aspects of life, but excess iron may result in formation of free radicals that damage cellular constituents. For this reason, the amount of iron within the cell is carefully regulated in order to provide an adequate level of a micronutrient while preventing its accumulation and toxicity. A major mechanism for the regulation of iron homeostasis relies on the post-transcriptional control of ferritin and transferrin receptor mRNAs, which are recognized by two cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) that modulate their translation and stability, respectively. IRP-1 can function as a mRNA binding protein or as an aconitase, depending on whether it disassembles or assembles an iron-sulfur cluster in response to iron deficiency or abundancy, respectively. IRP-2 is structurally and functionally similar to IRP-1, but does not assemble a cluster nor exhibits aconitase activity. Here we briefly review the role of IRP in iron-mediated damage induced by oxygen radicals, nitrogen-centered reactive species, and xenobiotics of pharmacological and clinical interest.Iron acquisition is a fundamental requirement for many aspects of life, but excess iron may result in formation of free radicals that damage cellular constituents. For this reason, the amount of iron within the cell is carefully regulated in order to provide an adequate level of a micronutrient while preventing its accumulation and toxicity. A major mechanism for the regulation of iron homeostasis relies on the post-transcriptional control of ferritin and transferrin receptor mRNAs, which are recognized by two cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) that modulate their translation and stability, respectively. IRP-1 can function as a mRNA binding protein or as an aconitase, depending on whether it disassembles or assembles an iron-sulfur cluster in response to iron deficiency or abundancy, respectively. IRP-2 is structurally and functionally similar to IRP-1, but does not assemble a cluster nor exhibits aconitase activity. Here we briefly review the role of IRP in iron-mediated damage induced by oxygen radicals, nitrogen-centered reactive species, and xenobiotics of pharmacological and clinical interest.


Journal of Autoimmunity | 2008

New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity

Stefania Recalcati; Pietro Invernizzi; Paolo Arosio; Gaetano Cairo

Ferritin is a ubiquitous and specialised protein involved in the intracellular storage of iron; it is also present in serum and other biological fluids, although its secretion processes are still unclear. We here review evidence supporting the hypothesis that macrophages play a role in the production and secretion of extracellular ferritin, as well as evidence supporting a novel function as a signalling molecule and immune regulator. In particular, H-ferritin, which inhibits the proliferation of lymphoid and myeloid cells, may be regarded as a negative regulator of human and murine hematopoiesis. The idea that it also acts as a signalling protein has been supported by the cloning and characterisation of the specific H-ferritin receptor TIM-2, a member of the TIM gene family. A number of studies of the mouse TIM gene family indicate that this protein plays an important role in immune-mediated diseases. This last finding, together with the fact that ferritin acts as an immuno-suppressor, has allowed us to formulate hypotheses regarding the possible role of alterations of H-ferritin/TIM-2 binding/signalling in the pathogenesis of autoimmune diseases.


Trends in Immunology | 2011

Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype

Gaetano Cairo; Stefania Recalcati; Alberto Mantovani; Massimo Locati

During inflammation, proinflammatory macrophages sequester iron as a well known bacteriostatic mechanism. Alternative activation of macrophages is linked to tissue repair, and during this process the expression pattern of genes important for iron homeostasis is distinct from that in proinflammatory macrophages. This leads to an increased capacity of the alternatively activated macrophages for heme uptake, via scavenger receptors, and for production of anti-inflammatory mediators via heme-oxygenase-dependent heme catabolism. Alternatively activated macrophages also release non-heme iron into tissues via ferroportin. Here, we propose that the iron-release-associated phenotype of alternatively activated macrophages significantly contributes to their role in various conditions, including tissue repair and tumor growth.


Gastroenterology | 1992

Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum

Antonello Pietrangelo; Emilio Rocchi; Giovanna Casalgrandi; Giampiero Rigo; Alberto Ferrari; Mario Perini; Ezio Ventura; Gaetano Cairo

To gain insights at the molecular level into the expression of iron-regulated genes [transferrin (Tf), transferrin receptor (TfR), and ferritin H and L subunits] in human intestinal areas relevant to iron absorption, the steady-state levels of specific messenger RNAs (mRNAs) were analyzed in gastric and duodenal samples obtained from 6 normal subjects, or 10 patients with anemia, 14 patients with untreated iron overload, and 8 patients with various gastrointestinal disorders. No Tf mRNA was detected in human gastroduodenal tissue, confirming earlier findings in the rat. In normal subjects, although higher levels of ferritin H- and L-subunit mRNAs were consistently found in duodenal than in gastric samples, no differences in the content of TfR transcripts were detected. However, a dramatic increase in TfR mRNA levels was specifically found in duodenal samples from subjects with mild iron deficiency but severe anemia. This response of the TfR gene is presumably secondary to decreased cellular iron content due to its accelerated transfer into the bloodstream, as also indicated by the low levels of ferritin subunit mRNAs found in the same tissue samples, and is not linked to faster growth rate of mucosal cells because no changes in duodenal expression of histone, a growth-related gene, were detected. In patients with secondary iron overload, a down-regulation of duodenal TfR gene expression and a concomitant increase in ferritin mRNA content were documented. On the contrary, a lack of TfR gene down-regulation and an abnormally low accumulation of ferritin H- and L-subunit mRNAs were detected in the duodenums of subjects with idiopathic hemochromatosis. Whether these molecular abnormalities in idiopathic hemochromatosis are relevant to the metabolic defect(s) of the disease is presently unknown.


American Journal of Pathology | 2008

Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver.

Paola Dongiovanni; Luca Valenti; Anna Ludovica Fracanzani; Stefano Gatti; Gaetano Cairo; Silvia Fargion

Iron depletion improves insulin resistance in patients with nonalcoholic fatty liver disease and diabetes and also stabilizes the hypoxia-inducible factor (HIF)-1, resulting in increased glucose uptake in vitro. This study investigated the effect of iron depletion by deferoxamine on insulin signaling and glucose uptake in HepG2 hepatocytes and in rat liver. In HepG2 cells, deferoxamine stabilized HIF-1alpha and induced the constitutive glucose transporter Glut1 and the insulin receptor. Up-regulation of insulin receptor by deferoxamine was mimicked by the intracellular iron chelator deferasirox and the hypoxia inducer CoCl2 and required the HIF-1 obligate partner ARNT/HIF-1beta. Iron depletion increased insulin receptor activity, whereas iron supplementation had the opposite effect. Deferoxamine consistently increased the phosphorylation status of Akt/PKB and its targets FoxO1 and Gsk3beta, which mediate the effect of insulin on gluconeogenesis and glycogen synthesis, and up-regulated genes involved in glucose uptake and utilization. Iron depletion of Sprague-Dawley rats increased HIF-1alpha expression, improved glucose clearance, and was associated with up-regulation of insulin receptor and Akt/PKB levels and of glucose transport in hepatic tissue. Conversely, gluconeogenic genes were not affected. In rats with fatty liver because of a high-calorie and high-fat diet, glucose clearance was increased by iron depletion and decreased by iron supplementation. Thus, iron depletion by deferoxamine up-regulates glucose uptake, and increases insulin receptor activity and signaling in hepatocytes in vitro and in vivo.


Free Radical Biology and Medicine | 2002

Serial review: iron and cellular redox statusThe iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage1,2

Gaetano Cairo; Stefania Recalcati; Antonello Pietrangelo; Giorgio Minotti

Iron acquisition is a fundamental requirement for many aspects of life, but excess iron may result in formation of free radicals that damage cellular constituents. For this reason, the amount of iron within the cell is carefully regulated in order to provide an adequate level of a micronutrient while preventing its accumulation and toxicity. A major mechanism for the regulation of iron homeostasis relies on the post-transcriptional control of ferritin and transferrin receptor mRNAs, which are recognized by two cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) that modulate their translation and stability, respectively. IRP-1 can function as a mRNA binding protein or as an aconitase, depending on whether it disassembles or assembles an iron-sulfur cluster in response to iron deficiency or abundancy, respectively. IRP-2 is structurally and functionally similar to IRP-1, but does not assemble a cluster nor exhibits aconitase activity. Here we briefly review the role of IRP in iron-mediated damage induced by oxygen radicals, nitrogen-centered reactive species, and xenobiotics of pharmacological and clinical interest.Iron acquisition is a fundamental requirement for many aspects of life, but excess iron may result in formation of free radicals that damage cellular constituents. For this reason, the amount of iron within the cell is carefully regulated in order to provide an adequate level of a micronutrient while preventing its accumulation and toxicity. A major mechanism for the regulation of iron homeostasis relies on the post-transcriptional control of ferritin and transferrin receptor mRNAs, which are recognized by two cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) that modulate their translation and stability, respectively. IRP-1 can function as a mRNA binding protein or as an aconitase, depending on whether it disassembles or assembles an iron-sulfur cluster in response to iron deficiency or abundancy, respectively. IRP-2 is structurally and functionally similar to IRP-1, but does not assemble a cluster nor exhibits aconitase activity. Here we briefly review the role of IRP in iron-mediated damage induced by oxygen radicals, nitrogen-centered reactive species, and xenobiotics of pharmacological and clinical interest.

Collaboration


Dive into the Gaetano Cairo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonello Pietrangelo

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Dario Conte

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Giorgio Minotti

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge